Название | On the growth of the number of non-compact heteroclinic curves |
---|---|
Авторы | Grines V.1, Gurevich E.1, Pochinka O.1, Shilovskaya A.2 1National Research University Higher School of Economics 2Lobachevskii State University |
Аннотация | We consider a class $SD(M^3)$ of gradient-like diffeomorphisms on closed 3-manifolds $M^3$ that have surface dynamics. In~\cite{GrGuPo-rhd} it was proven that the ambient manifold $M^3$ for such diffeomorphisms is a mapping torus $M_{g,\tau}$, $g\geq 0$, and the number of non-compact heteroclinic curves is no less than $12g$. In this paper it is established that for any integer $n\geq 12g$ there exists a mapping torus $M_{g,\tau(n)}$ and a diffeomorphism from the class $SD(M_{g,\tau(n)})$ having exactly $n$ heteroclinic curves. |
Ключевые слова | Heteroclinic curve, gradient-like diffeomorphism, mapping torus |
Образец ссылки на статью | Grines V., Gurevich E., Pochinka O., Shilovskaya A. On the growth of the number of non-compact heteroclinic curves [Электронный ресурс] // Дифференциальные уравнения и их приложения в математическом моделировании: материалы XIII Международной научной конференции. (Саранск, 12-16 июля 2017 г.). - Саранск: СВМО, 2017. - С. 398-402. Режим доступа: https://conf.svmo.ru/files/deamm2017/papers/paper56.pdf. - Дата обращения: 21.11.2024. |
© СВМО, МГУ им. Н. П. Огарёва, 2024
Powered by Yii Framework