УДК 517.928.4

Об устойчивости сингулярных однородных систем *

A.A. Kocob 1 , M.B. Koзлов 2

Институт динамики систем и теории управления имени В.М.Матросова СО РАН, Иркутск, Россия 1 , Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва, Саранск, Россия 2

Аннотация: Рассматриваются сингулярно возмущенные системы обыкновенных дифференциальных уравнений, правая часть которых содержит однородные функции первого порядка. Результатом исследования являются достаточные условия, при выполнении которых свойства асимптотической устойчивости и неустойчивости нулевого решения исходной системы является следствием аналогичного свойства нулевого решения систем быстрых и медленных движений, полученных в результате декомпозиции исходной системы.

Ключевые слова: сингулярные системы, однородные функции, устойчивость, декомпозиция.

1. Введение

Системы обыкновенных дифференциальных уравнений с малым множителем при производных, по-другому называемые сингулярно возмущенными (сингулярными), широко применяются в математическом моделировании систем различной природы, в которых некоторые параметры меняются со скоростью, несравнимо большей, нежели остальные. Основополагающим результатом в теории сингулярных систем является работа А.Н.Тихонова [1], в которой был предложен метод исследования данных систем путем их декомпозиции на систему быстрых и медленных движений [1]. Этот метод изначально использовался для исследования асимптотики о малому параметру в задаче Коши, однако в последствии был развит и на другие задачи.

Во многих приложениях, где используются математические модели в виде сингулярных систем, важную роль играет свойство устойчивости по Ляпунову. Начиная с [2] к анализу устойчивости сингулярных систем успешно применяется второй метод Ляпунова. Анализу устойчивости сингулярных систем в настоящее время уделяется внимание во многих работах (см., например, обзоры [3], [4], где цитируется более 500 работ). В результате приема декомпозиции смысл задачи сводится к тому, чтобы определить условия, при которых при достаточно малых значениях параметра об устойчивости (неустойчивости) положения равновесия исходной системы можно было судить по аналогичному свойству быстрой и медленной систем.

В данной статье изучаются сингулярные системы, правые части которых содержат однородные первого порядка функции, представленные как сумма линейных и нелинейных слагаемых. Рассматривается задача устойчивости по Ляпунову, обоснована возможность ее решения на основе декомпозиции и исследования быстрых и медленных подсистем по отдельности.

^{*}Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (проект № 15-08-06680).

XIII International scientific conference "Differential equations and their applications in mathematical modeling", Saransk, July 12-16, 2017.

2. Теоремы об асимптотической устойчивости и неустойчивости

Рассмотрим систему дифференциальных уравнений следующего вида

$$\dot{x} = f(x) + A_1 y,
\varepsilon \dot{y} = g(x) + A_2 y,$$
(1)

где $x \in R^n, y \in R^m; f(x)$ и g(x) непрерывные, удовлетворяющие локальному условию Липшида, однородные первого порядка вектор-функции; $A_1 \in R^{n,m}$ — постоянная прямоугольная матрица, $A_2 \in R^{m,m}$ — постоянная квадратная матрица, $\det A_2 \neq 0$. Осуществим декомпозицию данной системы. Для этого, полагая $\varepsilon = 0$, выразим из уравнения $g(x) + A_2 y = 0$ вектор y как $y = -A_2^{-1}g(x)$ и подставим его у первую подсистему. В результате получим две системы

$$\dot{x} = f(x) - A_1 A_2^{-1} g(x),$$
 — система медленных движений, (2)

$$\dot{y} = A_2 y$$
 — система быстрых движений. (3)

Правомерность применения систем (2), (3) для анализа устойчивости (неустойчивости) положения равновесия исходной системы (1) гарантируют следующие теоремы.

Теорема 1. Если нулевое решение систем (2), (3) асимптотически устойчиво, то существует такое ε_0 , что при $0 < \varepsilon < \varepsilon_0$ нулевое решение системы (1) также асимптотически устойчиво.

Теорема 2. Если нулевое решение системы (2) неустойчиво, причем это установлено применением первой теоремы Ляпунова о неустойчивости с помощью функции v(x), принимающей отрицательные значения и имеющей отрицательно определенную производную в силу системы (2), а система (3) асимптотически устойчива, то при всех достаточно малых значениях параметра $0 < \varepsilon < \varepsilon_0$ нулевое решение исходной системы (1) такжее неустойчиво.

Теорема 3. Если нулевое решение системы (2) асимптотически устойчиво, а система (3) неустойчива в следствие того, что матрица A_2 имеет вид $A_2 = -DS$, где D и S – соответственно диагональная и симметричная матрицы, причем D положительно определенная, а S отрицательно определенная, то при всех достаточно малых значениях параметра $0 < \varepsilon < \varepsilon_0$ нулевое решение исходной системы (1) также неустойчиво.

Пример 1. Материальная точка на кубической пружине с переменным коэффициентом жесткости

$$\varepsilon \ddot{x}_i + b\dot{x}_i + k(x)x_i^3 = 0,
i = 1, 2, 3,
k(x) = \frac{k_0}{x_1^2 + x_2^2 + x_3^2}.$$
(4)

Здесь $\varepsilon, b, k_0 = const > 0$ и порядок однородности равен единице, т.е. система (4) является однородной первого порядка, но при этом не является линейной. Позиционные силы $F_i(x) = -k(x)x_i^3$ являются возвращающими (всегда направлены к равновесию $x_i = 0$), но не являются потенциальными, так как $\partial F_i(x)/\partial x_j \neq \partial F_j(x)/\partial x_i$, поэтому третья теорема Томсона-Тэта-Четаева неприменима. Замена $\dot{x}_i = y_i$ (i = 1, 2, 3) приводит к сингулярной системе

$$\dot{x}_i = y_i, \qquad i = 1, 2, 3,
\varepsilon \dot{y}_i = -\frac{k_0 x_i^3}{x_1^2 + x_2^2 + x_3^2} - b y_i, \quad i = 1, 2, 3.$$
(5)

XIII International scientific conference "Differential equations and their applications in mathematical modeling", Saransk, July 12-16, 2017.

В результате декомпозиции системы (5), получаем

$$\dot{x}_i = -\frac{k_0 x_i^3}{b \|x\|^2}, \quad i = 1, 2, 3,$$

 $\dot{y}_i = -by_i, \qquad i = 1, 2, 3.$

Теорема 1 гарантирует асимптотическую устойчивость положения равновесия $x_i = 0, y_i = 0$ системы (5) при достаточно малых значениях ε .

Пример 2. Линейная система

$$\dot{x}_1 = y_1,
\dot{x}_2 = y_2,
\varepsilon \dot{y}_1 = -x_1 + x_2 - y_1 + y_2,
\varepsilon \dot{y}_2 = -x_1 - x_2 - y_1 - y_2.$$
(6)

Теорема 1 гарантирует асимптотическую устойчивость, устанавливаемую методом декомпозиции, при достаточно малых значениях параметра $0 < \varepsilon < \varepsilon_0$. Это согласуется с анализом характеристического уравнения

$$\varepsilon^2 \lambda^4 + 2\varepsilon \lambda^3 + (2\varepsilon + 2)\lambda^2 + 4\lambda + 2 = 0.$$

Согласно критерию Рауса-Гурвица, корни данного многочлена имеют отрицательную вещественную часть тогда и только тогда, когда $0<\varepsilon<2$.

Пример 3. Механическая система с полным набором сил

$$\varepsilon A\ddot{q} + B\dot{q} + (q^T M q)^{-1} C q^3 = 0. \tag{7}$$

Здесь $\varepsilon > 0$, $A = A^T$, $M = M^T$ — положительно определенные матрицы, B = K + G, $K = K^T$ — положительно определенная матрица, $G = -G^T$, C = BSL, где $S = S^T$, L — диагональная положительно определенная матрица. Порядок однородности в системе (7) равен единице, однако система не является линейной. Вектор $q^3 = (q_1^3, \ldots, q_n^3)^T$ есть вектор из степеней координат. В системе (7) присутствуют диссипативные, гироскопические, потенциальные и циркулярные силы, именно в этом смысле говорится о полном наборе сил.

Если матрица S положительно определенная, то по теореме 1 положение равновесия системы (7) асимптотически устойчиво при всех достаточно малых значениях параметра $\varepsilon > 0$.

Если же матрица S отрицательно определенная, то по теореме 2 положение равновесия $q=\dot{q}=0$ системы (7) неустойчиво.

Литература

- 1. Тихонов А. Н. О зависимости решений дифференциальных уравнений от малого параметра // Математический сборник. 1948. 22(64):2. С. 193-204.
- 2. Климушев А. И., Красовский Н. Н. Равномерная асимптотическая устойчивость систем дифференциальных уравнений с малым параметром при производных // Прикладная математика и механика. 1961. Т. 25, Вып. 4. С. 680-690.
- 3. Yan Zhang, D. Subbaram Naidu, Chenxiao Cai and Yun Zou. Singular Perturbations and Time Scales in Control Theories and Applications: an overview 2002-2012 // International Journal of Information and Systems Sciences. 2014. V. 9. No. 1. P. 1-36.
- 4. Yang C., Zhang Q., Zhou L. Stability Analysis and Design for Nonlinear Singular Systems. Lecture Notes in Control and Information Sciences. Springer-Verlag, Berlin Heidelberg 2013. 210 p.

MSC 34D15

On the stability of singular homogeneous systems

A.A. Kosov ¹, M.V. Kozlov ²

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences ¹, National Research Ogarev Mordovia State University ²

Abstract: We consider singularly perturbed systems of ordinary differential equations whose right-hand side contains homogeneous first-order functions. The research results are sufficient conditions under which the properties of asymptotic stability and instability of the zero solution of the original system is a consequence of the analogous property of the zero solution of the systems of fast and slow motions obtained as a result of decomposition of the initial system.

Keywords: singular systems, homogeneous functions, stability, decomposition.

References

- Tikhonov A. N. O zavisimosti resheniy differentsial'nykh uravneniy ot malogo parametra [On Dependence of Solutions of Differential Equations on Small Parameter] // Matematicheskiy sbornik [Sbornik Mathematics] 1948. 28. pp. 193-204.
- 2. Klimushev A. I., Krasovskiy N. N. Ravnomernaya asimptoticheskaya ustoychivost' sistem differentsial'nykh uravneniy s malym parametrom pri proizvodnykh [Uniform asymptotic stability of systems of differential equations with a small parameter in the derivative terms] // Prikladnaya matematika i mekhanika [J. Appl. Math. Mech.] 1961. V.25. P. 1011-1025.
- 3. Yan Zhang, D. Subbaram Naidu, Chenxiao Cai and Yun Zou. Singular Perturbations and Time Scales in Control Theories and Applications: an overview 2002-2012 // International Journal of Information and Systems Sciences. 2014. V. 9. No. 1. P. 1-36.
- 4. Yang C., Zhang Q., Zhou L. Stability Analysis and Design for Nonlinear Singular Systems. Lecture Notes in Control and Information Sciences. Springer-Verlag, Berlin Heidelberg. 2013. 210 p.