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Abstract: We study analytical solutions of equations describing steady flows of a
FENE-P fluid in a channel under slip boundary conditions. The Navier slip condition
and threshold-type slip conditions are considered. For the plane Poiseuille flow, we
obtain explicit formulas for the velocity field, the stress in the fluid, and the configuration
tensor.
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1. Introduction and problem formulation

In this communication, we shall deal with the FENE-P model for dilute solutions of flexible
polymer chains. This model was proposed by Peterlin [1] as a macroscopic approximation of the
FENE (Finite Extensible Nonlinear Elastic) model, which is one of the most used micro-macro
models in polymeric fluids [2-4|. Mathematically, the FENE-P system reads:

0
p<8:+(v-V)v> =-—-Vp+V. -7+ pg,

V-v=0,

T:)\<1—trAA L2_“I>’ Y
(A)/

A== (r=taye 1)

where p is the density of the fluid, v is the velocity field, p is the pressure, T is the extra-stress,
g denotes some external forces applied to the fluid, A is the configuration tensor (this tensor is
positive definite), the operator V is the gradient with respect to the variables x,y, z. As usual,

3

v
tr(A) denotes the trace of A, the symbol A is used to denote the upper-convected Oldroyd
derivative defined by

A=—r+(v-V)A = (Vo)A - A(Vo)',

and I is the identity tensor. In (1), n > 0 is polymer viscosity, A > 0 is the relaxation time,
L denotes a dimensionless parameter (L > v/3), which characterizes the extensibility of polymer
chains, and a = 1/(1 — 3/L?).

Sometimes it is assumed that the parameter L is sufficiently large and hence a = 1. However,
following [5], [6], we do not accept these assumptions in our work. Note also that we consider
the FENE-P model without taking into account the solvent viscosity.

The mathematical analysis of the FENE model and its approximations is rather difficult.
Examples of well-posedness results for the corresponding evolution equations are presented in
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the papers [7-14]. We also refer the reader to Li and Zhang [15] and Le Bris and Lelievre [16]
for detailed mathematical overviews on micro-macro models of complex fluids.

In this paper, we are interested in findind analitical solutions for steady flows of FENE-P
fluids within the space between two parallel plates (—h < y < h) under slip boundary conditions.
We will use the Navier slip condition on the channel walls y = +hA. This condition states that

the slip velocity is directly proportional to the shear stress in the fluid (see the pioneering work
of Navier [17]):

{v~n:(), @)

(Tn)tan = _kvtam

where n is the outer unit normal vector to the corresponding plate, k is a positive constant, and
Vtan denotes the component of v in the tangential direction at the channel wall, i.e.,

Vtan = v — (v - n)n.

We also consider threshold-type slip conditions, assuming that the slipping occurs along solid
walls only when a certain threshold for the shear stress is overcome:

v-n=0,
Vign = 0 if [|[(70)tan||r3s < o, (3)
v .
(T1)gan = — (0 + k|| Vian|[ps) ——— o if ||(71)tan gz > o,
[ Vtanrs

where o is a constant threshold.

The importance of studying the effects of slip for polymer fluids is noted in many studies
(see, e.g., [18-20] and the references cited therein).

It should be mentioned that analytical solutions for tube and slit flows of a FENE-P fluid
(with a vanishing solvent viscosity) were first given by Oliveira [6] subject to the classical no-slip
condition.

2. Finding analytical solutions

Let us assume that the steady flow in the channel is driven by constant pressure gradient

Ip
L— ¢ e>o, 4
LB ()
and g7 = (0, —g,0), i.e., we deal with the plane Poiseuille flow.
Then for the components of the velocity v, we have
vy =u(y), vy, =0, v,=0,

where v = u(y) is an unknown function. Moreover, it can easily be checked that
%—1—(’0-V)v:0, V-v=0,
v
A= —(Vv)A — A(Vv)T.

Therefore system (1) reduces to

,

—Vp+V. .14 pg =0,

n A
T (1 “w(AY/L2 “I> ’ (5)
(Vo)A + A(Vo)T = % (1—tr€4)/L2 _ aI> .
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Puc. 1. Flow configuration

First, we try to eliminate the configuration tensor A from (5) and obtain a closed system

with respect to v and 7.
Combining (5), and (5)5, we find

T =n((Vv)A + A(VU)T).

Left-multiplying the equality (5), by Vv, we obtain

- (Vv)A
(Vo) = X (1_‘“(14)/[/2 — aVv) .

Right-multiplying (5), by (Vv)T, we have

_n (AN
T(V’U)T - X (1_“(14)/? - a(Vv)T> .

Further, summing (7) and (8), we get

r_nf(Vv)A+ A(Vo)T B T
(Vu)T + 7(Vo)" = 3 < 1~ te(A)/ L2 a(Vo+ (Vo)') |.
Taking into account (6), from the last equality we obtain
T_"N T _ T
(Vo) + 7(Vv)' = A(n(l—tr(A)/LQ) a(Vo + (Vo) ))

Let us introduce a new function w = w(y) defined by the following formula

o 1
YT T w(A)/I

Multiplying (9) by A, we arrive at

A (Vo) + 7(Vo)') = wr —an(Vo + (Vo)T).

(6)

Now, let us express w as a function of tr(7). Take the trace of both sides of equality (5),:

_n tr(A)
tr(7) = 3 <l—tr(A)/L2 - Sa) .

172



XIII Meotcoynapoonas nayunas xwongepenyus “Jupdeperyuanrvroie ypasHEHUs U UL NPUNOHCEHUA
6 mamemamuyeckom modeauposaruy”, Capanck, 12-16 woasn 2017.

XIII International scientific conference "Differential equations and their applications
in mathematical modeling”, Saransk, July 12-16, 2017.

This yields that

_ L*(\tr(7) + 3an)

L2 + Mtr(T) 4 3an’
Substituting the expression (12) into the right-hand side of (10), we obtain

tr(A)

" nL? 4+ \tr(T) + 3an
= L2 _

Equation (11) is equivalent to the following system

d
2/\—u7$y — WTyy = 0,

dy

du du
)\@Tyy — WTgy + m]aTy =0,

d
)\d—ZTyZ — WTgy = 0,
WTyy = 0,

wTy, = 0,

wT,, = 0.

Taking into account (10), we obviously have w(y) # 0 for any y such that —h < y < h.
Therefore, from (14),, (14);, (14)4 it follows that

Tyy = Tyz = Tzz = 0.
In addition, if we combine this with (14), and (14),, we get
du
—WTgy + and—y =0, (15)

Ty = 0.

Now, multiply equality (14), by —an/w, equality (15) by 2A7;,/w and add the results; this gives

2 = ——Toy- 1
T, cmT y (16)
It follows from (4) and (5), that
Oty _ Op _ ¢
oy ox
whence
Try = —&y. (17)
Substituting the value of 7, into the right-hand side of (16), we obtain
2\ 2,2
S (18)
an
Thus, we have
[ 20¢%y? ]
&y &y 0
an
0 0 O
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Now we turn to finding of the configuration tensor A. From (5), it follows that
1 /A
A=— (T + aI> ,
w A\n

whence, taking into account (19) and (13), we get

L*(26°N%y* + a*n?) B anL*\y 0
220242 1 aL2n? + 30212 2620242 1 al2n? + 30212
A— anL?\¢y a’n?L? 0
2820292 4+ aL?n? + 3a®n? 28202y + aL?n? + 3a’n?
. . a2n?L2
| 282X2y2 + aL?n? + 3a?n? |

Applying Sylvester’s criterion, we see that the tensor A is positive definite. This confirms
the correctness of the solution obtained here.
To conclude, we must find the velocity u. Using (13), (17), and (18), from (15) we find the
velocity gradient:
du (2028292 + an®L? + 3a’n?)y
(Ty - a?n3L2 :
Integrating the last equality with respect to y, we get

§(2N%y" + (al? + 3a%)ny?)

u(y) = - 2G2L27’]3

+C,

where C is a constant.
In accordance with the Navier slip boundary condition (2), the following equality must be
satisfied:
&h = ku(£h),
or equivalently,
EE(E2XN2hY + (aL? + 3a?)nh?)

h =
§ 2a2L2773

+ kC,

whence

k 2a2L%n3

O = Eh N E(E2N2R + (aL? + 3a2)n°h?)

Thus, we have

_ SN -y + (al? 1 3a%)e*(h? —y?) | R
n 2a2L2n3 k-

Under the threshold slip boundary condition (3), the velocity u is determined by the following
formulas:

u(y) (20)

EN(h* — yh) + (aLl? + 3a®)En* (R — )

i <
2aZL217 if ¢h <o,
u(y) = (21)
EN(h —y*) + (aL® + 3a*)en*(h* —y?)  Eh—0
f .
2a2L2n3 + k if&h >0

It is readily seen that (21) reduces to (20) as o — 0.
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3. Concluding remarks

Note that the velocity field

_ EX(h =y + (aL? + 3a®)n? (h* — y°)

up(y) 202 L2

corresponds to the no-slip condition on the channel walls.
We can rewrite (21) as follows

uo(y) if €h <o,

u(y) = s
up(y) + §hk

it Eh > 0.

Clearly, &R is one of the key parameters for the problem under consideration. If £h overcomes
the threshold value o, then the slip regime holds at solid surfaces, otherwise the fluid adheres to
the channel walls.

In the case L — +oo (infinite extensibility), we obtain the velocity solution

§

S (p2 .2 : <

(1 = 3?) if €h <o,
u(y) = ¢ ho

S p2 .2 — :

277(h y°) + k: it Eh > o,

which is parabolic as for Newtonian fluids. However, the constitutive law reduces to the upper
convected Maxwell model (see [6] for more detail).
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