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Abstract: This paper studies a time nonlocal inverse boundary-value problem for
a second-order hyperbolic equation. First, we introduce a definition of a classical
solution, and then the original problem is reduced to an equivalent problem. Further,
the existence and uniqueness of the solution of the equivalent problem is proved using
a contraction mapping. Finally, using the equivalency, the existence and uniqueness
of classical solution is obtained.
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1. Introduction

Recently, problems with nonlocal conditions for partial differential equations have been of
great interest, which is caused by the need to generalize the classical problems of mathematical
physics in connection with the mathematical modeling of a number of physical processes that
are studied by modern natural science [1|. Note that most of the publications about problems
with spatially nonlocal conditions and integral conditions for partial differential equations are
found in [2]- [6]. In [6], a problem of time nonlocal integral conditions for hyperbolic conditions
is investigated.

There are many cases when the requirements of practice lead to the problems of determining
the coefficients or the right-hand side of the differential equation from some known data from its
solution. Such problems were called inverse problems of mathematical physics. Inverse problems
represent an actively developing branch of contemporary mathematics.

In this article we study a time nonlocal inverse boundary-value problem for second-order
hyperbolic equation with integral conditions.

2. Formulation of the problem

Let T' > 0 be a fixed number and denote by Dp := {(z,t) : 0 < 2 < 1,0 <t < T}. We
consider a nonlocal inverse boundary value problem for a hyperbolic equation

(2, t) — gy (2, t) = a(t)u(z, t) + f(x,t) (1)

in the rectangle domain Dy, with initial conditions of integral form

T
u(z,0) + /M1 (x,)u(z,t)dt = p(x) (0<z<1), (2)
0
T
wy(z,0) + /Mg(a:,t)u(a:,t)dt — (@) (0<z<1), (3)
0
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subject to boundary conditions
w(0,t) = uy(1,t) =0 (0<t<T), (4)

as well as additional condition
u(l,t) =h(t) (0<t<T), (5)

where f(z,t), o(x),¥(x), Mq(z,t), Ma(x,t), h(t) are given functions, u(x,t) and a(t) are the
sought functions.

Definition. By a classical solution of the inverse boundary value problem (1)-(5) we under-
stand a pair of functions {u(z,t),a(t)} such that u(z,t) € C?(Dr), a(t) € C[0,T] and relations
(1)-(5) hold.

To investigate problem (1) - (5) we consider the auxiliary problem. It is required to determine
a pair of functions {u(z,t),a(t)} such that and u(z,t) € C*(Dr), a(t) € C[0,T) from relations
(1)-(4) and

R'(t) — uge(1,t) = a(t)h(t) + f(1,¢) (0<t<T). (6)

Analogously [7], proved the following

Lemma 1. Assume the following conditions are satisfied: ¢(z),9(x) € C[0,1], h(t) €
C2[0,T], h(t) #0 (0 <t < T), f(a,t), Mi(z,t), Ms(z,t) € C(D7), and the compatibility

conditions

T
)+ [ (L k()= (1),
0
T
B (0) + /Mg(l,t)h(t)dt — $(1).
0

Then the problem of finding a classical solution of (1)-(5) is equivalent to the problem of
determining functions u(x,t) € C?(Dr) and a(t) € C[0,T] from (1)-(4), (6).

3. Solvability of inverse boundary-value problem

We shall seek the first component u(x,t) of classical solution {u(z,t),a(t)}, of the problem
(1)-(4), (6) in the form

u(x,t) = Zuk(t) sin \gx ()\k = g(2/~c - 1)) , (7)
k=1

where

1
up(t) = Q/U(x,t) sin \gzdr (k=1,2,...)
0

are twice differentiable functions on the interval [0, T]. Then applying the formal scheme of the
Fourier method, from (1) and (2) we have

uf (t) + Nup(t) = Fp(t;u,a) (k=1,2...;0<t<T), (8)
uk(O) = Yk — Mlk(u), UZ(O) = wk + Mgk(u) (]{7 = 1,2 . ) (9)

where
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Fi(t;u,a) = fr(t) + a(t)ur(t), [fr(t) = fl f(z, t) sin A\gxd,
0

1

or =2 [ p(z)sin \gzdz, ¢ =2 [(x) sin \pzde,
0 0

—_

M (z, t)u(z, t)dt> sin Apzdz,

My (z, t)u(z, t)dt | sin \gzdz, (k=1,2,...).

[\
[\

Solving problem (8)-(9) we obtain
up(t) = (or — Mig(u)) cos At + 5= — Mop(u)) sin Ayt

t
+>\1/Fk(7;u,a)sin)\k(t—7')d7 (k=1,2,...). (10)
k
0

To determine the first component u(x,t) of classical solution of the problem (1)-(4), (6), by
virtue (10), from (7) we get

u(z,t) = k§1 {((pk — My (u)) cos At + 5~ (1/% — Mo (u)) sin A\t

t
1
—i—)\/Fk(T;u,a)sin)\k(t—T)dT sin A\px. (11)
k
0

By virtue of (7), it follows from (6) that

a(t) = [h(t)]” {h” f(1,t) +Z>\2 1)kt )}. (12)

To determine the second component a(t) of classical solution of the problem (1)-(4), (6),
taking into account (10), in (7) we obtain

a(t) = [A(t)] ! {h”(t) —fL,t)+ gjl A2(—1)F+1 (g — Mig(u)) cos Agt

t

1
+/\*(¢k — Moy (u)) sin Apt + / (T;u,a)sin \g(t — 7)dr | 7. (13)
k
0

Thus, the solution of problem (1) - (4), (6) was reduced to the solution of the system (11),
(13) with respect to the unknown functions u(x,t) and a(t).

To study the uniqueness of the solution of problem (1) - (4), (6), the following assertion
plays an important role.

Lemma 2. If {u(z,t),a(t)} is a classical solution of (1)-(4), (6) then the functions

1
2/uw t)sin \gzdx (k=1,2,...)
0

satisfy counting system (10), on the interval [0, T7.

Proof. Suppose that {u(x,t), a(t)} is a classical solution of problem (1)-(4), (6). By multiplying
both sides of equation (1) by the functions 2sin \yx (k = 1,2,...), then integrating obtained
equality with respect to z from 0 to 1 and using the following relations
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1

d2
2/utt(ac,t) sin A\pzdr = p7e] 2/u(w,t) sin \pzdr | = ul(t) (k=1,2,...),
0 0
1 1
2/um(x,t) sin A\pzdr = —\? Z/u(:c,t) sin \yzdr | = —Mug(t) (k=1,2,...),
0 0

we conclude that condition (8) is satisfied.

Analogously, from (2) and (3) we obtain that conditions (9) holds true.

Thus ug(t) (k=1,2,...) are solutions of problems (8), (9). And from this, it directly follows
that the functions ug(t) (k =1,2,...) satisfy system (8) on the interval [0, T]. The lemma is thus
proved.

1
It’s obvious that if uy(t) = 2 [u(z,t)sin \ywdz (k = 1,2,...) are solutions of system (10),
0

then a functions u(x,t) = E k(t) sin \yz and a(t) are also solutions of system (11), (13).
k=1
From Lemma 2 it follows that

Corollary. Suppose that systems (11), (13) have a unique solution. Then the problem (1)
- (4), (6), couldn’t have more than one solution, in other words, if problem (1)-(4), (6) have a
solution, then it is unique.

With the purpose to study problem (1)-(4), (6) consider the following spaces:

Let B;T [8] denote the set of all functions of the form

t) = Zuk(t) sin A\pz (x\k = g(Qk - 1)) )
k=1

considered in domain D7, where each function from wug(¢) (k= 1,2,...), is continuous on [0, 7]
and satisfy the following condition

[N

J(u) = {Z (A% Huk(t)HC[QT])Q} < too.

k=1
The norm in this space is defined as follows

e, 1)1 3, = T (u):

We denote by E3., the Banach space B%T x C[0,T] of vector functions z(z,t) = {u(x,t),a(t)}
with norm

ot Dll g = e, )] g+ la(®) oz -

It is known that BS’T and Eigp are Banach spaces.
Now consider the operator

O (u,a) = {P1(u,a), P2(u,a)}

in the space E% where
oo

b (u,a) = u(x,t) EZ t) sin Agz,
k=0
Py (u,a) = a(t)
and the functions g (t) (k = 1,2,...), a(t) are equal to the right-hand sides of (10) and (13)
respectively.
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It is easy to see that

(5 (th0lon)’ s < v6 (5 (A?’mr))

k=1

+\[<Z (A} | Mg (u )\)2> +\f<z (X ’1/}’“‘)2)2

N

(£ Ot + 7 ([ £ 0ot ar)

1

&) 2\ 2

+V6T |a(t) ooy (Z (Ai Huk(t)HC[O,T]) ) :
k=1

< ([ oo,y

{”h" F e+ (5 Aﬁ)é [( 5 (4 mDZ)é

+ (i (A3 1M2k<u>|)2> 5

k=1

la(®)ll oo,

=

* (i (M le<u>|>2) L (i (2 r¢k|>2>

k=1

k=1

T 3 . :
+VT (/Z (A% ’fk(T)Dz dT) +T Ha(t)HC[O,T] <Z ()‘2 ”Uk(t)Hc[o,T})Q>
0

Assume that the data for problem (1)-(4), (6) satisfy the following conditions

1) p(z) € C?[0,1], ¢"(z) € L2(0,1) and p(0) = ¢'(1) = ¢"(0) = 0;

2) ¥(x) € C*0,1],9"(z) € Ly(0,1) and ¥(0) = 0,¢/(1) =

3) f(x,1), fu(z,t) € C(Dr), fou(x,t) € L2(Dr), f(0,t) = fo(1,¢) =0 (0 <t <T);
4) Mi(2,t), Mig(z,t), Miga(z,t), Migga(,t) € C(Dr), M12(0,t) = Miy(1,¢) =0

0<t<T)
5) My(z,t), Mag(2,t), Maze(z,t) € C(Dr), Ma(1,8) =0 (0 <t <T);
6) h(t) € C?0,T),h(t) #0 (0<t<T).
Suppose that M,(0,t) = My,(1,t) =0 (0 <t < T). By using
u(0,t) = up(1,t) = upe(1,8) =0 (0<t<T)

we have
T

[ M;(0,)u(0,t)dt = 0,
0

- (f My (z, t)u(x, t)dt

0

d2
dz?

(M. (1, t)u(1,t) + My (1, t)uy(1,t))dt = 0;

o 3
=
8
~
~—
=
8
~
~—
QU
~

N
\—/\—/

T
/(Mlxx(o £)u(0,t) + 2M1,(0, t)ug(0,t) + My (0, t)ugy(0,t))dt = 0;
0
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a3 T

e [ Miy(z, t)u(x, t)dt

0 =0
T
= / (Mg (x, t)u(z, t) + 3Mige(z, t)uz(x, t)
0

Obviously,

3Migz(x, t)ugs(x,t) + My (2, t)uzes(0,t))dt € La(0,1)

00 2 3 T
(Z (N |M1k(u)|)2> < |4 <f Ml(:v,t)U(fv,t)dt>
k=1 0 L(0,1)

T
= | [ (Migaz(z, t)u(z,t) + 3Mize(z, t)ug(x, t) + 3Mig (@, t)uge (2, 1) + My (2, t)uggs (2, t))dt
0
T
= [[Migaz (2, 1) ||C Dr)

f (z,t)dt

L2(0,1)
+ 3| Mize (2, )|l o(p )
L2(0,1)

T
[ ug(z,t)dt
0 L2(0,1)
T
13| Mra (2,8, / (1)t

0

T
M@ Dl / oo, 1)t
L2(0,1) 0

(16)

L2(0,1)
On the other hand, it’s clear that

Hence we find

f(fummxtdt dz

1

T T
/uzm x, t)dt| < Z)\ /uk(t)dt
0 k= 0

2

<N [ gz (@, t)dt
0

LQ(o 1)
I

T
2 1w ()| oo,y f [ Upge (@, t)dt | sin \yzda
k=1 0
1
T x 9 % 00 1 /T
<5 (S O uOlonn?) | £ (2] ftemetont

2\ 2
(z, )dt) SinAm:d:z:)
iy T
2
< )‘kHuk HCOT]) > /umxx x, t
0
or

9

Eond
—

w\’ﬂ
Mg

£
Il
—

L,(0,1)

T
/ gz, 0| <
0

L2(0,1)
Analogously,we can prove that

T
/u(z, t)dt <
0

L»(0,1)

o[ N

e, 0)lgg (18)

| N

e, t)lpg
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Ug (z, t)dt <

L»(0,1)

N[N

e, )lpg

St~

2o

HU(IIJ,t)HBg’T ) (19)

T

/uw(x,t)dt <
0 L(0,1)
From (16), by (18) and (19), we conclude

e 2
(£ O)?) " < (¥rarsl Dy + 3 1ass(o. Oy

=

T
+3 Mo (@, Ollon,) + 1M1, )l epgy) 5 I, s, - (20)
Similarly to the way it was done in obtaining estimate (20), we have
1
00 21\ 2
(£ 023)*) < (Iarsta o

T
1M D)ooy + 1Mooy e Ol g (21)
Then from (14) and (15), taking into account (20) and (21), we find
(Ol g, < Ax(T) + Bu(T) e Dy, (el ooz +1). (22)

60y < Ao(T) + Ba(T) ular, Ol gz (lal®)llogozmy + 1), (23)

where

A1(T) = V6" (@) Ly 0.) + VOV (@) Ly01) + VOT [l foa (@, D)l 1) »

Bi(T) = g(HMlmx(x,t)Hc[o,T} + 3 | Mize (@, )l oy + 3 1M1a(@, )l cpo,7) + 2)T
As(T) = [[BE] ogoy RO — £ lego

1

+ (Z )‘k2> [H‘P”/(x)HLQ(OJ) + Hw”(x)HLg(O,l) + \/T”fm(x’t)HLz(DT)] ’
k=1

X[HMlmm(x,t)HC[O,T} + ||M1m($at)||c(DT) + Her(xat)HC(DT)
+ Mz, )l ey + [ Maze (2, D) o(py)
+[|Maz (2, )l o (pyy + 1 M2(@, D)l ipyy + 25

Further, from the estimates (22) and (23) it follows that

BZ(T) = H[h(t)]*ch[o,T] (;% ()‘1:2>>

(e, Ollss . + laWll oz < AT) + BT fule, Ol s, (oDl +1) (@)

where

Theorem 1. If conditions 1) - 6) and the condition
B(T)(A(T)+3) <1, (25)

hold, then problem (1)-(4), (6) has a unique solution in the ball K" = Kg(||z]|gs < A(T)) +2) of
the space Eigp
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Proof. In the space E3. we consider the equation
z2=®z, (26)

where z = {u,a}, ® = {®1(u,a), P2(u,a)}, and the components ®;(u,a) (i = 1,2), of operator
®(u,a) defined by the right side of equations (11) and (13).

Consider the operator ®(u,a), in the ball K = Kpg of the space E% Let’s show that the
operator ® mapping the elements of ball K = Kg into itself.

Similarly, with the aid of (24) we obtain that for any z € Kp the following inequality hold
1215 < A(T) + B(T) [[u(z, )]l 3, (la(t)llcio.z +1)

< A(T) + B(T)(A(T) + 2)(A(T) + 3).

Hence, taking (25) into account, the operator ® acts in the ball.

Now, we show that the operator ® is a contraction.

Indeed, for any z1,22 € Kp

|21 = P2of| gy < 2B(T)(A(T) + 2)([[ua (2, 1) — ua(z, )l g3, + llar(t) = a2(B)llcjor))

is satisfied.

Then by (20), it is clear that the operator ® on the set K = K satisfy the conditions of the
contraction mapping principle. Therefore the operator ® has a unique fixed point {z} = {u,a},
in the ball K = Kpg, which is a solution of equation (26); i.e. in the sphere K = Kp is the
unique solution of the systems (11), (13). Then the function u(x,t) as an element of space BgT,
is continuous and has continuous derivatives uy(z,t) and ug,(z,t) in Dy.

Hence we conclude that the function u(z,t) is continuous in the domain Drp.

Further, it is possible to verify that equation (1) and conditions (2), (3), (4), (6) are satisfied
in the usual sense. Consequently, {u(z,t),a(t)} is a solution of (1) - (4), (6), and by Lemma 2 it
is unique in the ball K = Kg. The proof is complete.

From Theorem 1 and Lemma 2, it follows directly the following assertion.

Theorem 2. Suppose that all assumptions of Theorem 1, and the compatibility conditions

T
h(0) + /Ml(l, t)h(t)dt = p(1),
0

T
h'(0) + /Mg(l,t)h(t)dt = (1)
0

hold. Then problem (1) - (5) has a unique classical solution in the ball K = Kp of the space E3..
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