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Abstract: In this short communication paper a continuous-time model for dynamic
corporate cash management is presented, utilizing the principles of optimal control
theory. The evolution of a company’s liquidity position is formulated through a system
of Ordinary Differential Equations (ODEs) that correctly distinguishes between stocks
(cash, debt, investments) and flows (rates of borrowing and investment). The problem
is framed to minimize financing costs and maximize investment returns over a finite
horizon. By applying Pontryagin’s Maximum Principle, the necessary conditions for
optimal financial interventions are derived. The resulting control policies are threshold-
based strategies, dynamically guided by the economic shadow prices of cash, debt, and
invested capital. This framework provides a financially intuitive and mathematically
sound foundation for proactive liquidity management, bridging theoretical control
theory with practical corporate finance.
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1. Introduction

Effective liquidity management is paramount for corporate stability and growth. A
firm must continuously balance its cash reserves to cover operational expenses, mitigate
risks, and seize investment opportunities. An optimized cash balance is crucial for covering
operational costs, financing investments, and hedging against uncertainties. Traditional,
discrete-time financial models often fail to capture the high-frequency dynamics of cash
flows, limiting their utility to historical analysis or long-term forecasting rather than
real-time decision support. These methods primarily offer historical snapshots, serving as
reactive or forecasting tools rather than real-time control instruments.

To address this gap, a continuous-time modeling approach is proposed, utilizing a
system of Ordinary Differential Equations (ODEs). This allows for a granular representation
of the interplay between operational cash flows, short-term borrowing, and investment
activities. The central challenge lies in determining the optimal timing and magnitude of
these financial interventions to achieve a specific corporate objective, such as minimizing
costs or maximizing terminal value. This shifts financial management from reactive to
proactive, providing a strategic advantage in dynamic economic environments.

This problem is naturally formulated as one of optimal control. By defining the
company’s financial state with a set of state variables and its actions (borrowing, investing)
as control variables, a policy can be sought that optimizes a predefined objective functional.
Pontryagin’s Maximum Principle provides the mathematical machinery to solve such
problems, yielding a set of necessary conditions that the optimal policy must satisfy.
Thus, an ODE-based model is proposed for a company’s daily cash balance.

2. The Dynamic System Model

To accurately model the system, a clear distinction between stocks and flows is
essential. The financial state of the company at any given time ¢ is comprehensively
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described by three state variables:
— C(t): The cash balance.
— B(t): The total outstanding short-term debt.
— I(t): The total capital allocated to short-term investments.
The company can influence these states through four control variables:
—ug(t) > 0: The rate of new borrowing.
—up(t) > 0: The rate of debt repayment.
—uy(t) > 0: The rate of new investment.
— ug(t) > 0: The rate of selling/liquidating investments.
The system’s dynamics are governed by the following system of ODEs:

O~ Rty ~ B) — rsB0) + il (1) +us(t) — uplt) —ur(t) +us(t) (1)
dB

7 = un(t) — up(t) 2)
o = ui(t) — us(t) ()

where:

— R(t) and E(t) are the exogenous rates of revenue and expenses.

— rp is the interest rate on outstanding debt (a cost).

— 1y is the rate of return on invested capital (a gain).

This formulation correctly applies interest rates rg and r; to the stocks of debt B(t)
and investments I(t), respectively. The controls are subject to constraints, such as non-

negativity and upper bounds, and the state variables must also satisfy constraints (e.g.,
C(t) > 0, B(t) > 0, I(t) > 0).

3. The Optimal Control Problem

The objective is to manage liquidity over a finite horizon [0,7] to maximize the
terminal value of the firm, which we can equate to maximizing net assets. This is equivalent
to minimizing a cost functional J:

J— / (rsB(t) — r1 (1)) dt — C(T) (4)

The integrand L = rpB(t) — r;I(t) represents the net financing cost at time t. The
terminal cost ®(C(T)) = —C(T') ensures the objective is to maximize the final cash
balance, assuming terminal debt and investments can be settled.

4. Application of the Pontryagin’s Maximum Principle

To derive the optimal control policy, the Hamiltonian H is defined:

dC dB dl
H=L+Xo— 4+ g— +A\1— 5
+Cdt+Bdt+Idt (5)
where Ao (), Ag(t), and A\;(t) are the adjoint variables (or shadow prices) associated with
cash, debt, and investments.
Substituting the dynamics from Equations (I)-(3) and the cost function L:
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H = (rgB(t) —ril(t))
+ Ao (R(t) — E(t) —rgB(t) +riI(t) + up — up — usy + ug)

+/\B(UB—UP>+>\[(U[—US).

The adjoint equations are given by A= —%—f for each state x:
d\ H
d_tc — _g_c =0 = M\¢(t) = const,
d\ OH
d_tB =38 —(rp — Acrp) = —1p(1 = Ac),
d\;  O0H

E = —E = —(—7’[ -+ )\07’1) = 7’1(1 — )\0>,

with the transversality conditions at time 7"

Ael?) =~ = —(D = L
00
Ap(T) = KGR 0,
0D
M) =~ 57 =0

From Ac(T) = 1 and Ao =0, we have A¢(t) = 1 for all ¢ € [0, T]. This simplifies the other
adjoint equations: Ag = 0 and A; = 0. With their terminal conditions, we get Ag(t) =0
and A;(t) = 0. This result is an artifact of the simplified cost function. A more complex

model with transaction costs or non-linear rates would yield dynamic shadow prices.

Let’s re-group the Hamiltonian by controls to find the optimal policies:

H =...+ (/\C’ + )\B)UB — ()\C + )\B)UP + ()\[ — /\0)U1 — ()\] — )\0)11,5

(10)

To minimize H, the controls must be chosen based on the signs of their respective

coeficients (the switching functions):

e Borrowing (up): The coeflicient is (A\c+Ap). To minimize H, if \c+Ap < 0, means

borrowing at the maximum rate. If A\¢ + Ap > 0, means refraining from borrowing
(up = 0). This means borrowing only if the marginal value of cash (—\¢) is greater
than the marginal cost of debt (Ap).

Repayment (up): The coefficient is —(Ac+Ap). To minimize H, if —(Ac+Ap) <0,
means repayment at the maximum rate. This is the opposite condition to borrowing.

Investment (u;): The coefficient is (A\; — A\¢). Investment (u; > 0) if \; — A¢ <
0, i.e., if A¢ > A;. This means investment only if the marginal value of cash is
greater than the marginal value of the investment. This is financially logical: cash is
converted to an investment if the investment is "cheaper"(has a lower shadow price)
than cash.

Liquidation (ug): The coefficient is —(A; — A¢). Investment liquidation (ug > 0)
if —(A\; — A¢) <0, ie., if \; > Ac. Investments should be converted back into cash
when their value exceeds that of holding cash.
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5. Conclusion

This short communication paper demonstrates the utility of an ODE-based optimal
control framework for dynamic cash management via formulation of a mathematically
sound and financially intuitive optimal control model for corporate cash management.
By accurately defining the state dynamics and objective function, control policies that
align with fundamental economic principles are derived. The framework demonstrates
that decisions regarding borrowing, investment, and repayment should be governed by
the relative shadow prices of cash, debt, and invested capital. Pontryagin’s Maximum
Principle yields necessary conditions for these policies, often leading to dynamic threshold
strategies, providing a robust foundation for corporate financial engineering.

While this deterministic model provides a strong foundation, future work should
incorporate stochastic elements for revenues, expenses, and market rates. This would
lead to a stochastic optimal control problem, likely requiring solution via Hamilton-
Jacobi-Bellman (HJB) equations. Nonetheless, the presented ordinary differential equation
(ODE)-based framework serves as a crucial first step in building quantitative, proactive
tools for corporate financial engineering. Future work could integrate this model with
broader corporate finance decisions (e.g., capital budgeting, dividend policy) for a holistic
financial management framework.
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