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Abstract: Stochastic longitudinal oscillations of a viscoelastic rope with moving
boundaries are considered, taking into account damping forces. The initial conditions
and the external load are assumed to be random. To find the characteristics of random
variables of stochastic oscillations, it is necessary to obtain statistical estimates for the
solution of a system of random integro-differential equations. The statistical Monte
Carlo method is used to estimate the expansion coefficients.
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At present, reliability issues in the design of machines and mechanisms require more
and more complete consideration of the dynamic phenomena that take place in the
designed objects. The widespread use in technology of mechanical objects with moving
boundaries necessitates the development of methods for their calculation. The problem
of oscillations of systems with moving boundaries is related to obtaining solutions to
integro-differential and partial differential equations in time-variable domains [1–10]. Such
tasks are currently not well understood. Their peculiarity is the difficulty in using the
known methods of mathematical physics, suitable for problems with fixed boundaries.
The complexity of the solutions obtained is explained by the fact that up to now there has
not been a sufficiently general approach to the analysis of the features of the dynamics of
such systems. In connection with the danger of resonance, the study of forced oscillations
is of great importance here. Attempts to investigate this process have been made, but the
results obtained are limited mainly by a qualitative description of dynamic phenomena
[1–4]. In addition, it is recognized that deterministic modeling of systems cannot be
adequate for some types of problems, so it is necessary to switch to probabilistic-statistical,
where there are random variables, stochastic fluctuations. When solving here, mainly
approximate methods are used [5–9], since obtaining exact solutions is possible only in
the simplest cases [10].

If the damping of transverse vibrations is mainly due to the action of external damping
forces, then in the case of longitudinal vibrations, the damping is mainly affected by elastic
imperfections in the material of the vibrating object [5–10]. The study of viscoelasticity
includes the analysis of the stochastic stability of stochastic viscoelastic systems, their
reliability, etc. The paper considers stochastic linear longitudinal oscillations of a viscoelastic
rope with moving boundaries, taking into account the influence of damping forces. The
case of a difference kernel makes it possible to reduce the problem of analyzing a system of
stochastic integro-differential equations to the study of a system of stochastic differential
equations. To estimate the expansion coefficients, it is proposed to apply the statistical
numerical Monte Carlo method [11].

The differential equation describing the longitudinal vibrations of the rope (viscoelasticity
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is taken into account based on the Voigt hypothesis) has the form [7,10]

Utt(x, t) + 2\alpha Ut(x, t) - a2
\biggl[ 
Uxx(x, t) - 

\int t

0

K(t - \nu )Uxx(x, \nu )d\nu + \mu Uxxt(x, t)

\biggr] 
= f(x, t).

(1)
Border conditions:

U(\nu 0t, t) = 0; U(\nu 0t+ l0, t) = 0. (2)

Initial conditions:

U(x, 0) = U1(x); Ut(x, 0) = 0. (3)

In problem (1)-(3) it is indicated: U(x, t) – longitudinal displacement of the rope

point with coordinate x at time t; a2 =
E

\rho 
– velocity of wave propagation in the rope, E –

modulus of elasticity of the rope material, \rho – linear mass density; \alpha – resistance force of
the medium acting per unit length of the rope, proportional to the speed of movement; \mu 
– a small parameter that takes into account viscoelasticity; \nu 0t+ l0 – the law of motion of
the rope boundary; f(x, t) – a function that characterizes an external disturbance; K(z)
– relaxation core.

Let’s introduce new variables that stop the bounds:

\xi =
(x - v0t)

l0
; \tau =

at

l0
; U(x, t) = V (\xi , \tau ).

.
After transformations, we get:

V\tau \tau (\xi , \tau ) - 2\nu V\xi \tau (\xi , \tau ) - (1 - \nu 2)V\xi \xi (\xi , \tau ) - 2k0V\xi (\xi , \tau ) + 2k1V\tau (\xi , \tau ) - 

 - d
\xi +\nu \tau \int 
\xi 

K( - d(\xi  - \eta ))V\xi \xi 
\biggl( 
\eta ,

1

\nu 
(\xi  - \eta ) + \tau 

\biggr) 
d\eta +\lambda 

\biggl( 
V\xi \xi \xi (\xi , \tau ) - 

1

\nu 
V\xi \xi \tau (\xi , \tau )

\biggr) 
= F (\xi , \tau );

(4)

V (0, \tau ) = 0; V (1, \tau ) = 0; (5)

V (\xi , 0) = V1(\xi ); V\tau (\xi , 0) = 0. (6)

Here \nu =
\nu 0
a
; d =

l0
\nu 0
; k0 = a\nu l0; k1 = \alpha \nu d; \lambda =

\mu 

d
; F (\xi , \tau ) = \nu 2d2f(x, t).

The function F (\xi , \tau ) can be represented as

F (\xi , \tau ) =
\infty \sum 
n=1

Fn(\tau ) \mathrm{s}\mathrm{i}\mathrm{n}(\omega n\xi ), \omega n = \pi n. (7)

Theorem 1. The solution to problem (4)–(6) can be given as a string

V (\xi , \tau ) =
\infty \sum 
n=1

Vn(\tau ) \mathrm{s}\mathrm{i}\mathrm{n}(\omega n\xi ) (8)
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Substituting (7), (8) into (4), after transformations, we obtain the system of equations

Vn\tau \tau (\tau ) +

\biggl( 
2k1 +

\lambda 

\nu 
\omega 2
n

\biggr) 
Vn\tau (\tau ) + \omega 2

n(1 - \nu 2)Vn(\tau )+

+ \omega 2
nd

1\int 
\xi 

K( - d(\xi  - n))Vn

\biggl( 
1

\nu 
(\xi  - \eta ) + \tau 

\biggr) 
d\eta = Fn(\tau ) (9)

with initial conditions

Vn(0) = 2

1\int 
0

V1(\xi ) \mathrm{s}\mathrm{i}\mathrm{n}(\omega n\xi )d\xi ;Vn\tau (0) = 0. (10)

We accept the initial conditions and the external load as random, representing the
sum of sinusoids with random amplitudes, denoting them \widetilde V (\xi ) and \widetilde F (\xi , \tau ) respectively.
In this case, the oscillations will be random, and equations (9) form a system of random
integro-differential equations

\widetilde Vn\tau \tau (\tau ) + \biggl( 2k1 + \lambda 

\nu 
\omega 2
n

\biggr) \widetilde Vn\tau (\tau ) + \omega 2
n(1 - \nu 2)\widetilde Vn(\tau )+

+ \omega 2
nd

1\int 
\xi 

K( - d(\xi  - n))\widetilde Vn\biggl( 1

\nu 
(\xi  - \eta ) + \tau 

\biggr) 
d\eta = \widetilde Fn(\tau ); (11)

\widetilde Vn(0) = 2

1\int 
0

\widetilde V1(\xi ) \mathrm{s}\mathrm{i}\mathrm{n}(\omega n\xi )d\xi ; \widetilde Vn\tau (0) = 0. (12)

Characteristics of random variables – mathematical expectation, variance and covariance,
have the following form:

M(\widetilde V (\xi , \tau )) =
\infty \sum 
n=1

M(\widetilde Vn(\tau ) \mathrm{s}\mathrm{i}\mathrm{n}(\omega n\xi ), (13)

D(\widetilde V (\xi , \tau )) =
\infty \sum 

n,k=1

Dn,k(\tau ) \mathrm{s}\mathrm{i}\mathrm{n}(\omega n\xi ) \mathrm{s}\mathrm{i}\mathrm{n}(\omega k\xi ), (14)

C(\widetilde V (\xi , \tau , \zeta , \upsilon )) =
\infty \sum 

n,k=1

Cn,k(\tau , \upsilon ) \mathrm{s}\mathrm{i}\mathrm{n}(\omega n\xi ) \mathrm{s}\mathrm{i}\mathrm{n}(\omega k\zeta ). (15)

To find the characteristics (13)-(15) of stochastic linear longitudinal oscillations of a
viscoelastic rope, it is necessary to obtain statistical estimates for the solution of a system
of random integro-differential equations (11). To do this, the relaxation kernel K(z) can
be taken in exponential form with a random component:

K(z, \beta ) = K(z, b)| b=\beta =
N\sum 
j=1

cje
 - \beta jz, (16)
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where cj \in R+, \beta j – is a possible value of a positive random variable bj.

Denote the dependence of \widetilde V (\xi , \tau ) and \widetilde Vn(\tau ) on the random vector b as \widetilde V (\xi , \tau , b) and\widetilde Vn(\tau , b), respectively. By changing the variable
unj(\tau , b) =

1\int 
\xi 

e - \beta jd\eta \widetilde Vn\biggl( 1

\nu 
(\xi  - \eta ) + \tau , b

\biggr) 
d\eta (17)

the system of random integro-differential equations (11) is transformed into a system of
random differential equations of the form

\widetilde Vn\tau \tau (\tau , b) +\biggl( 2k1 + \lambda 

\nu 
\omega 2
n

\biggr) \widetilde Vn\tau (\tau , b) + \omega 2
n(1 - \nu 2)\widetilde Vn(\tau , b) + \omega 2

nd

N\sum 
j=1

cje
bjd\tau unj(\tau , b) = \widetilde Fn(\tau ).

(18)
The initial conditions will look like

\widetilde Vn(0, b) = 2

1\int 
0

\widetilde V1(\xi ) \mathrm{s}\mathrm{i}\mathrm{n}(\omega n\xi )d\xi ; \widetilde Vn\tau (0, b) = 0; unj(0, b) = 0. (19)

The study of the system (18)-(19) is possible using the statistical numerical Monte
Carlo method [11–13].
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