УДК 532.5:536.4:517.9

Математическое моделирование закрученной струи в приложениях к малоэмиссионному сжиганию низкосортных топлив^{*}

Мизхер У. Д., Ковальногов В. Н., Вельмисов П. А. Ульяновский государственный технический университет

В России, как и в большинстве стран мира, в настоящее время одной из целей государственной политики является снижение уровня угроз, негативно влияющих на атмосферный воздух в населенных пунктах [1]. Поэтому на законодательном уровне установлены низкие уровни предельно допустимых концентраций (ПДК) загрязняющих веществ в воздухе: оксидов азота, оксидов серы, летучей золы, бенз(а)пирена и т. д. Одним из основных источников загрязнения атмосферного воздуха является энергетика, а именно уходящие дымовые газы энергетических котлов ТЭС. Согласно [2] устойчивую позицию потребности в органическом топливе ЕЭС России занимает именно газ, имеющий ряд преимуществ перед другими видами органического топлива, в т. ч. и экологического характера.

Одним из перспективных и экологичных методов сжигания природного газа является его комбинированное сжигание с биогазом. Основной особенностью биогаза как топлива, является пониженное по сравнению с природным газом содержание метана и наличие диоксида углерода в больших количествах, что влияет на скорость распространения пламени и понижает теплоту сгорания биогаза. В работе [3] Институтом газа НАН Украины в лабораторных условиях оценены перспективы данного метода и сделан вывод о том, что биогаз является одним из экологически безопасных видов топлива.

Для моделирования процесса горения закрученного топливо-воздушного потока в данной работе используются уравнения неразрывности, Навье-Стокса, энергии [4–6].

$$div(\rho \vec{V}) = 0$$

$$div(\rho u \vec{V}) = -\frac{\partial p}{\partial x} + div(\mu \ grad \ u) + \left(\frac{\partial \overline{(\rho u'^2)}}{\partial x} + \frac{\partial \overline{(\rho u'v')}}{\partial y} + \frac{\partial \overline{(\rho u'w')}}{\partial z}\right)$$

$$div(\rho v \vec{V}) = -\frac{\partial p}{\partial y} + div(\mu \ grad \ v) + \left(\frac{\partial \overline{(\rho u'v')}}{\partial x} + \frac{\partial \overline{(\rho v'^2)}}{\partial y} + \frac{\partial \overline{(\rho v'w')}}{\partial z}\right)$$

$$div(\rho w \vec{V}) = -\frac{\partial p}{\partial z} + div(\mu \ grad \ w) + \left(\frac{\partial \overline{(\rho u'v')}}{\partial x} + \frac{\partial \overline{(\rho v'w')}}{\partial y} + \frac{\partial \overline{(\rho w'^2)}}{\partial z}\right)$$

$$\rho c_p \left[u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z}\right] = div \left[(\lambda + \frac{c_p \mu_t}{Pr_t})grad \ T\right] + S_h.$$

Здесь u, v, w – компоненты скорости по оси (x, y, z) последовательно, p – давление, ρ – плотность, $(-\rho \overline{u'^2}, -\rho \overline{v'^2}, -\rho \overline{u'v'}, -\rho \overline{u'v'}, -\rho \overline{v'w'})$ – напряжения Рейнольдса, μ – динамическая вязкость, μ_t – турбулентная вязкость, T – температура, c_p – удельная теплоемкость, λ – теплопроводность, Pr_t – турбулентное число Прандтля, S_h включает теплоту химической реакции и любые другие объемные источники тепла, \vec{V} – вектор скорости:

^{*}Работа выполнена при финансовой поддержке грантом РФФИ и Ульяновской области (проекты № 18-41-730015), грантом Президента РФ (проект НШ-2493.2020.8)

$$\vec{V} = u\vec{i} + v\vec{j} + w\vec{k}$$

Уравнения модели турбулентности *k*-*\epsilon* для описания процесса горения для стационарного потока примут согласно [4] вид

$$div(\rho k\vec{V}) = div\left[\left(\mu + \frac{\mu_t}{\sigma_k}\right)grad \ k\right] + G_k + G_b - \rho\epsilon - Y_M + S_k,$$

$$div(\rho\epsilon\vec{V}) = div\Big[\Big(\mu + \frac{\mu_t}{\sigma_\epsilon}\Big)grad\ \epsilon\Big] + \rho C_1 S_\epsilon - \rho C_2 \frac{\epsilon^2}{k + \sqrt{\nu\epsilon}} + C_{1\epsilon} \frac{\epsilon}{k} C_{3\epsilon} G_b + S_\epsilon,$$

где

$$C_1 = \max\left[0.43, \frac{\eta}{\eta+5}\right], \ C_{3\epsilon} = \tanh\left|\frac{v}{u}\right|, \ \eta = S\frac{k}{\epsilon}$$

Постоянные модели $C_{1\epsilon}, C_2, \sigma_k$ и σ_ϵ имеют по умолчанию следующие значения [4]: $C_{1\epsilon} = 1, 44, C_2 = 1, 9, \sigma_k = 1, \sigma_\epsilon = 1, 2$, k – кинетическая энергия турбулентности, ϵ – скорость диссипации, G_k – источник за счёт градиента средней скорости, G_b – источник за счёт архимедовых сил (важно для конвективных течений), Y_M – представляет собой вклад флуктуирующей дилатации в сжимаемой турбулентности в общую скорость диссипации, C_2 и $C_{1\epsilon}$ – постоянные, σ_k и σ_ϵ – турбулентные числа Прандтля для k и ϵ , соответственно, S_ϵ, S_k – определяемые пользователем источники, S – тензор средней скорости деформации, $\nu = \frac{\mu}{\rho}$

– кинематическая вязкость, $\mu_t = \rho C_\mu \frac{k^2}{\epsilon}$ – турбулентная вязкость ($C_\mu = 0,09$). Камера сгорания представляет собой цилиндр с заданной постоянной температурой

Камера сгорания представляет собой цилиндр с заданной постоянной температурой стенки $T_c = 617$ К и обладает следующими геометрическими характеристиками: L = 7,3 м; D = 4 м.

Камера сгорания (рис. 1) имеет одну комбинированную горелку, позволяющую обеспечить одновременное сжигание, как природного газа, так и биогаза. Горелочное устройство с центральной подачей газа содержит канал для подвода природного газа $S_{ch4} = 0,00125$ м², канал для подвода биогаза $S_{biogas} = 0,078$ м² и канал для подвода воздуха $S_{air} = 0,234$ м².

Рис. 1. Схема камеры сгорания

В ходе исследования моделировалось как совместное горение смеси природного газа и биогаза, так и раздельное горение топлив. На рис. 2 представлен результат горения комбинаций топлив с закруткой воздуха $\omega = 300$ рад/с, температурой воздуха на входе в горелочное устройство $T_{air} = 583$ К. Моделируемый расход топлив через горелку при совместном сжигании природного газа $\dot{m}_{ch4} = 0,2$ кг/с, биогаза $\dot{m}_{biogas} = 0,3$ кг/с. Моделируемый расход через горелку при сжигании только природного газа $\dot{m}_{ch4} = 0,4$ кг/с, при сжигании биогаза

 $\dot{m}_{biogas} = 0,59$ кг/с. Результаты горения представлены в вертикальном сечении пламени на расстоянии x = 1 м от амбразуры комбинированного горелочного устройства.

Рис. 2. Профиль температуры T(1, y, 0), сравнение горения биогаза, горения природного газа и комбинированного горения природного газа и биогаза.

Литература

- 1. Стратегия экологической безопасности Российской Федерации на период до 2025 года / Утвержден Указом Президента РФ от 19.04.2017 г., № 176.
- 2. Схема и программа развития Единой энергетической системы России на 2018-2024 годы / Утвержден приказом Минэнерго России от 28.02.2018 г., № 121.
- 3. Сигал И. Я., Марасин А. В., Смихула А. В. Газогорелочные устройства для сжигания биогаза в котлах. Энерготехнологии и ресурсосбережение. 2014. № 3. С. 68-71.
- 4. ANSYS FLUENT 12.0. Theory Guide. April, 2009.
- 5. Anderson J. D. Computational Fluid Dynamics: The Basic with Application. New York. McCraw-Hill. 1995.
- 6. Chung T. J. Computational fluid dynamics. Cambridge university press, 2010.

MSC2020 76D05, 80A20, 35B40

Mathematical modeling of a swirling jet in applications to low-emission combustion of low-grade fuels

U. J. Mizher, V. N. Kovalnogov, P. A. Velmisov Ulyanovsk State Technical University