MSC2020 92E99

Dynamical systems on \mathbb{T}^2 modeling Josephson junction isomonodromic deformations and Painlevé 3 equations^{*}

Yulia Bibilo^{1, 2}, Alexey Glutsyuk^{3, 4}

University of Toronto at Mississauga¹, Institute for Information Transmission Problems², CNRS³, HSE University⁴

The tunneling effect predicted by B.Josephson (Nobel Prize, 1973) concerns the Josephson junction: two superconductors separated by a narrow dielectric. It states existence of a supercurrent through it and equations governing it. The overdamped Josephson junction is modeled by a family of differential equations on 2-torus depending on 3 parameters: B (abscissa), A (ordinate), ω (frequency). We study its rotation number $\rho(B, A; \omega)$ as a function of (B, A) with fixed ω . The phase-lock areas are the level sets $L_r := \{\rho = r\}$ with non-empty interiors; they exist for $r \in \mathbb{Z}$ [1]. They are analogues of the famous Arnold tongues. Each L_r is an infinite chain of domains going vertically to infinity and separated by points called constrictions (expect for those with A = 0). See the figures below for $\omega = 2, 1, 0.3$.

We show [2] that: 1) all constrictions in L_r lie in the vertical line $\{B = \omega r\}$; 2) each constriction is positive: some its punctured neighborhood in the vertical line lies in $Int(L_r)$. These results confirm experiences of physicists (pictures from physical books of 1970-th) and two mathematical conjectures.

The proof uses an equivalent description of model by linear systems of differential equations on $\overline{\mathbb{C}}$ [1], their isomonodromic deformations described by Painlevé 3 equations and methods of theory of slow-fast systems.

References

- 1. Buchstaber V.M., Karpov O.V., Tertychnyi S.I. The rotation number quantization effect. Theoret and Math. Phys. 2010. Vol. 162, No. 2, pp. 211–221.
- 2. Bibilo Yu., Glutsyuk A. On families of constrictions in model of overdamped Josephson junction and Painlevé 3 equation. Preprint. 2021. URL: https://arxiv.org/abs/2011.07839

 $^{^{*}\}mbox{Research}$ of A.Glutsyuk is supported by RSF grant No 18-41-05003