УДК 517.9; 519.6

Асимптотический анализ уравнений Клейна-Гордона-Фока с чисто кубической нелинейностью *

Алексеева Е.С.¹, Рассадин А.Э.¹

Нижегородское математическое общество¹

Нелинейные волновые уравнения являются математическими моделями широкого класса физических процессов [1] - [2]. Некоторые из таких уравнений, например, уравнение sin-Гордон:

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} + \sin u = 0$$

интегрируются методом обратной задачи рассеяния (см. [1] - [2] и ссылки там). Однако задача Коши для большинства встречающихся на практике уравнений этого типа не поддаётся аналитическому исследованию, и для построения их решений применяется пенлеве-анализ [2], групповой анализ [3] и. т. д.

В представленном докладе найдены асимптотические решения уравнений Клейна-Гордона-Фока с чисто кубической нелинейностью (УКГФ) как без учёта линейного затухания:

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} + u^3 = 0 \tag{1}$$

так и с его учётом:

$$\frac{\partial^2 u}{\partial t^2} + 2\delta \frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} + u^3 = 0, \qquad (2)$$

где $0<\delta\ll 1$ - малый коэффициент линейного затухания.

Для построения асимптотического решения УКГФ без учёта затухания с помощью теории модуляции Уизема [1] сначала надо найти его решение типа бегущей волны.

Подставляя в уравнение (1) $u(x,t) = U(\vartheta)$, где

$$\vartheta = \frac{\Omega t - \kappa x}{\sqrt{\Omega^2 - \kappa^2}}$$

- автомодельная переменная (Ω и κ - произвольные постоянные, подчиняющиеся условию $|\Omega| > |\kappa|$), получим, что неизвестная функция $U(\vartheta)$ удовлетворяет вырожденному уравнению Дуффинга:

$$\frac{d^2U}{d\vartheta^2} + U^3 = 0. aga{3}$$

Уравнение (3) имеет точное решение, выражающееся через эллиптический косинус (см. [4] и ссылки там):

$$U(\vartheta) = A \, cn \left[A \, \vartheta, \frac{1}{\sqrt{2}} \right],\tag{4}$$

где А - амплитуда нелинейных колебаний.

Далее, на основе решения (4) уравнения (3) в рамках подхода, развитого в [5], для плотности энергии модулированной волны h(x,t) выведено квазилинейное уравнение:

$$\frac{\partial h}{\partial t} + v(h) \frac{\partial h}{\partial x} = 0, \qquad h(x,0) = h_0(x), \qquad x \in \mathbb{R},$$
(5)

^{*}Работа выполнена при поддержке гранта РФФИ № 18-08-01356-а.

где локальная скорость переноса энергии равна:

$$v(h) = \frac{h^{\frac{\sqrt{3}}{2}} - 2 + \sqrt{3}}{h^{\frac{\sqrt{3}}{2}} + 2 - \sqrt{3}},\tag{6}$$

а $h_0(x)$ - всюду неотрицательное начальное распределение плотности энергии волны.

Рис. 1. Локальная скорость переноса энергии

График функции (6) представлен на рис. 1. Из него видно, что $\lim_{h\to+\infty} v(h) = 1$. Это означает, что если $h_0(x) \gg 1$, то $h(x,t) \approx h_0(x-t)$.

Амплитуда A(x,t) модулированной волны - асимптотического решения УКГФ (1), профиль которого даётся формулой (4), выражается через решение уравнения (5) согласно:

$$A(x,t) = \sqrt{2} h^{\frac{1}{4}}(x,t).$$
(7)

Поведение решения уравнения (5) до наступления градиентной катастрофы может быть исследовано методом характеристик [1], а после наступления градиентной катастрофы - с помощью принципа абсолютного минимума Олейник-Лакса [6].

В докладе приведен ряд точных решений задачи Коши для уравнения (5), например, если

$$h_0(x) = \left[(2 - \sqrt{3}) \; \frac{1 + m \exp(-\alpha x^2)}{1 - m \exp(-\alpha x^2)} \right]^{\frac{2}{\sqrt{3}}} \;, \tag{8}$$

где 0 < m < 1 и $\alpha > 0$, то

$$h(x,t) = \left[(2 - \sqrt{3}) \frac{1 + m \exp(-\alpha x^2)(1 + S(x,t))}{1 - m \exp(-\alpha x^2)(1 + S(x,t))} \right]^{\frac{2}{\sqrt{3}}}$$
(9)

с функцией

$$S(x,t) = \sum_{n=1}^{\infty} \frac{(\sqrt{\alpha(n+1)} mt)^n}{(n+1)!} H_n(\sqrt{\alpha(n+1)} x) \exp(-n\alpha x^2),$$

выражающейся через полиномы Чебышёва-Эрмита:

$$H_n(\zeta) = (-1)^n \exp(\zeta^2) \frac{d^n}{d\zeta^n} \exp(-\zeta^2).$$

Разумеется, выражение (9) справедливо только до наступления градиентной катастрофы, которая в данном случае происходит в точке $x_c = \sqrt{\frac{2}{\alpha}}$ в момент времени $t_c = \frac{1}{m}\sqrt{\frac{e}{2\alpha}}$.

На рис. 2 приведены графики, иллюстрирующие временную эволюцию амплитуды (7) модулированной волны при начальной плотности энергии волны (8) с параметрами m = 0,8 и $\alpha = 1$. Пунктирная линия на рис. 2 соответствет начальному профилю амплитуды волны в этом случае, а сплошная линия отвечает амплитуде волны непосредственно перед градиентной катастрофой.

Рис. 2. Эволюция огибающей модулированной волны

Для УКГ Φ с учётом линейного затухания также ищется его автомодельное решение в виде волны, бегущей со скоростью V:

$$u(x,t) = \sqrt{1 - \frac{1}{V^2}} W(\tau), \qquad \tau = t - \frac{x}{V}, \qquad |V| > 1.$$
(10)

Подставляя формулы (10) в уравнение (2), найдём, что неизвестная функция $W(\tau)$ должна удовлетворять вырожденному уравнению Дуффинга с затуханием:

$$\frac{d^2 W}{d\tau^2} + 2\gamma \,\frac{dW}{d\tau} + W^3 = 0 , \qquad \gamma = \frac{\delta \,V^2}{V^2 - 1} \,. \tag{11}$$

С другой стороны, ещё П. Пенлеве было известно [7], что уравнение:

$$\frac{d^2w}{d\tau^2} + 2\gamma \frac{dw}{d\tau} + w^3 + \frac{8\gamma^2}{9}w = 0$$
(12)

имеет следующее точное решение [7]:

$$w(\tau) = A_0 \exp\left(-\frac{2\gamma\tau}{3}\right) cn \left[\theta_0 + \frac{2A_0}{3\gamma}\left(1 - \exp\left(-\frac{2\gamma\tau}{3}\right)\right), \frac{1}{\sqrt{2}}\right],$$
(13)

где A_0 и θ_0 - произвольные постоянные.

Далее, если параметр γ мал: $\gamma \ll 1$, то уравнение (12) слабо отличается от уравнения (11), следовательно, можно принять, что:

$$W(\tau) \approx w(\tau) \,. \tag{14}$$

Таким образом, при слабом затухании формулы (10), (13) и (14) дают нам асимптотический вид формы этой волны. Отметим, что в этом случае множество асимптотических решений уравнения (2) задаётся двумя произвольными постоянными A_0 и θ_0 , а не произвольной функцией $h_0(x)$ - начальным условием для уравнения (5).

Рис. 3. Электрическая схема однородной цепочки с сегнетоэлектрическими конденсаторами

В докладе приведены графики, демонстрирующие близость асимтотического решения (13) для профиля волны и численного решения уравнения (11) с помощью метода Рунге-Кутта 4-го порядка точности. Также в докладе дана физическая интерпретация процедуры построения этого асимптотического решения в рамках теории квазигамильтоновых систем. Удивительным здесь является то обстоятельство, что возможна и обратная процедура, а именно, отталкиваясь от выражения (13) как асимптотического решения уравнения (11), при выяснении точности этого приближения мы легко приходим к уравнению (12) [8].

Уравнения (1) и (2) могут быть применены для описания распространения волн электрического заряда в однородной цепочке с сегнетоэлектрическими конденсаторами, находящейся в термодинамическом равновесии с окружающей средой, температура которой совпадает с температурой Кюри сегнетоэлектрика. Принципиальная схема такой цепочки представлена на рис. 3. В этом случае функцию u(x,t) можно интерпретировать как безразмерный заряд на нелинейном конденсаторе NC, находящемся в точке x в момент времени t, а член с первой производной по времени в УКГФ (2) может рассматриваться как учёт влияния активного сопротивления индуктивностей в элементарных четырёхполюсниках такой цепочки.

Литература

- 1. Уизем Дж. Линейные и нелинейные волны. М.: Мир, 1977. 624 с.
- 2. Кудряшов Н. А. Аналитическая теория нелинейных дифференциальных уравнений. Москва-Ижевск: Институт компьютерных исследований, 2004. 360 с.
- 3. Ибрагимов Н. Х. Группы преобразований в математической физике. М.: Наука, 1983. 280 с.
- 4. Алексеева Е. С., Рассадин А. Э. Применение равенства Парсеваля к периодическим решениям дифференциальных уравнений // Математический вестник педвузов и университетов Волго-Вятского региона. 2018. Вып. 20. С. 57-66.
- 5. Костромина О. С., Потапов А. А., Ракуть И. В., Рассадин А. Э. Колебания в однородной цепочке с сегнетоэлектрическими конденсаторами с отрицательной емкостью // Ученые записки физического факультета Московского универститета. 2017. № 6. С. 1760703-1-6.
- 6. Олейник О. А. Разрывные решения нелинейных дифференциальных уравнений // Успехи математических наук. 1957. Т. 12. No. 3(75). С. 3 - 73.
- 7. Painlevé P. Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme // Acta Mathematica. 1902. V. 25. P. 1-85.
- Alekseeva E. S., Rassadin A. E. Explicit asymptotic solution of the degenerate Duffing equation // International conference on Dynamical Systems 'Shilnikov WorkShop 2017' (Nizhny Novgorod, Russia, December 15-16, 2017). Book of abstracts. P. 59.

MSC 34A45; 35A35

Asymptotic analysis of Klein-Gordon-Fock equations with purely cubic nonlinearity

E.S. Alekseeva¹, A.E. Rassadin¹ Nizhny Novgorod Mathematical Society¹