
XIII Международная научная конференция ”Дифференциальные уравнения и их приложения
в математическом моделировании”, Саранск, 12-16 июля 2017.

XIII International scientific conference ”Differential equations and their applications
in mathematical modeling”, Saransk, July 12-16, 2017.

MSC 74A45

Algorithm of neural network method for creep model
parameter identification problem

E.B. Kuznetsov 1, S.S. Leonov 1, A.N. Vasilyev 2

1 Moscow Aviation Institute (National Research University),
2 Peter the Great St. Petersburg Polytechnical University

Abstract: The paper deals with a parameter identification problem for creep and
fracture model that describe a process of metal structures deformation. The system
of ordinary differential equations of Rabotnov’s structural parameters kinetic creep
theory is applied for describing this model. For solving the parameter identification
problem, we proposed to use principals and techniques of neural network modeling.
The procedure of neural network modeling application we are going to use for finding
of uniaxial tension model parameters for isotropic steel 45 specimens at creep conditions.
The obtained results of neural network modeling will be compared with theoretical
strain-damage characteristics, experimental data and results of other authors.
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1. Introduction

In recent years, there is an increasing need for the description of deformation and fracture
processes in complex temperature-power regimes for materials with complicated rheological
characteristics including viscosity. These problems find wide application in different fields of
science and technology, e. g. mechanical engineering and aerospace industry. Special attention
is paid to the possibility of creep accounting at high and moderate temperatures for metal and
composite structures. However, up to now there has been no common approach to the description
of this phenomenon, and there are dozens various creep theories and their modifications, e. g. the
aging theory, the hardening theory, the heredity theory and the Rabotnov theory of structural
parameters. It is not usually possible to reliably determine which of the theories is better to use in
a particular case. Applying equations of any theory may be a very complex process, as equations
used usually contain several material constants (creep characteristics), which complicated to
obtain. In other words, these parameters can be determined by using information about a
deformation process. A primary source of information is an experiment. Creep characteristics
may depend on the type of used material and its condition, regime of loading, temperature, type
of anisotropy, and other factors. Problems of parameter identification are very complicated. All
these reasons indicate the need for a common approach to determining parameters of models
for various equation types. This paper provides a unified method for identifying parameters of
models describing creep and fracture processes of structures. The method considered involves
the use of experimental data. The principles and the techniques of neural network modeling are
adopted as a basis for the approach developed in the work.

2. Neural network methodology

By using the results of the monograph [1], we consider the construction of a neural network
for the system of m ordinary differential equations (ODEs) of order r with p unknown scalar
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parameters given by a vector \alpha = (\alpha 1, \alpha 2, . . . , \alpha p)
T

\bfF (t,\bfy ,\bfy \prime , . . . ,\bfy (r), \alpha ) = 0, t \in [t0, t\ast ] (1)

with initial conditions \left\{       
\bfy (t0) = \bfy 0,

...

\bfy (r - 1)(t0) = \bfy r - 1.

(2)

The following notation is introduced here

– \bfF 
\Bigl( 
t,\bfy ,\bfy \prime , . . . ,\bfy (r), \alpha 

\Bigr) 
=
\bigl( 
f1(t,\bfy ,\bfy 

\prime , . . . , \bfy (r), \alpha ), . . . , fm(t,\bfy ,\bfy \prime , . . . ,\bfy (r), \alpha )
\bigr) T is a vector

function of vector arguments;

– fi(t,\bfy ,\bfy 
\prime , . . .\bfy (r), \alpha ), i = 1, . . . ,m are scalar functions of vector arguments;

– \bfy (t) = (y1(t), y2(t), . . . , ym(t))T is the required solution, which is a vector function of
argument t and also implicitly depends on the parameters \alpha 1, \alpha 2, . . . , \alpha p;

– \bfy j = (yj1, yj2, . . . , yjm)T , j = 0, . . . , r - 1 are vectors of \bfy (t) and its r - 1 derivatives values
at the point t0;

– \bfy (j)(t) =
dj\bfy (t)

dtj
;

– \bfy (0)(t) = \bfy (t).

While solving physical problems certain restrictions must be imposed on ranges of values of
the parameters \alpha 1, \alpha 2, . . . , \alpha p

\alpha s \in As \subseteq \BbbR , s = 1, . . . , p. (3)

Suppose that the problem (1)-(2) also satisfies the Cauchy existence theorem. Moreover,
there is a set of additional data on behavior of function \bfy (t) at points t1, t2, \cdot \cdot \cdot , tl

\bfy (tq) = \bfy e
q, tq \in (t0, t\ast ], q = 1, . . . , l, (4)

where \bfy e
q =

\bigl( 
yeq1, y

e
q2, . . . , y

e
qm

\bigr) T are vectors of \bfy (t) values at points t1, t2, . . . , tl.
We use the approach to the solution of the initial value problem (1)-(2) based on neural

network modeling technique. We are going to approximate each component of the vector function
\bfy (t) via neural networks, i. e. we represent them in the form

\^yi(t, \bfw i) =

Ni\sum 
j=1

cij\nu j(t,\bfa ij), i = 1, . . . ,m. (5)

Here:

– \bfw i = (\bfw i1,\bfw i2, . . . ,\bfw iNi) are matrices of parameters to be determined (neural network
coefficients);

– \bfw ij = (cij ,\bfa ij);

– cij are linear input parameters;

– \bfa ij =
\Bigl( 
a1ij , a

2
ij

\Bigr) 
are nonlinear input parameters;

– Ni are numbers of neuron units in (5).
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The type of a neural network basis element cij\nu j(t,\bfa ij) is determined by a scalar function of
the scalar argument, so-called activation function

\nu j(t,\bfa ij) = \varphi j(x), x = \psi (t,\bfa ij),

where \psi (\cdot ) is some given function (for example, \psi (t,\bfa ij) = a1ij \cdot t+ a2ij). The activation function
may be given in the form of a hyperbolic tangent, radial basis function (e. g. in form of Gaussian
function \varphi (x) = exp\{  - x2\} ) or in another form as it is presented in the book [1].

Using relations (1)-(2) as well as the neural network approximation (5) and additional data
(4), we obtain a normalized error functional in the integral (continuous) form

J(\alpha ,\bfw 1, . . .\bfw m) = R \cdot 
m\sum 
i=1

\left(  \beta i t\ast \int 
t0

\bigm| \bigm| \bigm| fi(\xi , \^\bfy , \^\bfy \prime , . . . \^\bfy (n), \alpha )
\bigm| \bigm| \bigm| 2 d\xi +

+\gamma i

r - 1\sum 
j=0

\bigm| \bigm| \bigm| \^y(j)i (t0,\bfw i) - yji

\bigm| \bigm| \bigm| 2+ \delta i

l\sum 
q=1

\bigm| \bigm| \^yi(tq,\bfw i) - yeqi
\bigm| \bigm| 2\right)  ,

(6)

where

– \^\bfy (t,\bfw ) = (\^y1(t,\bfw 1), . . . , \^ym(t,\bfw m))T is a vector of the neural network approximation (5);

– R =

\Biggl( 
m\sum 
i=1

(\beta i \cdot (t\ast  - t0) + \gamma i \cdot r + \delta i \cdot l)

\Biggr)  - 1

;

– \beta i, \gamma i, \delta i, i = 1, . . . ,m are penalty coefficients.

Also we can get the error functional (6) in the discrete form

J(\alpha ,\bfw 1, . . .\bfw m) =
1

m\sum 
i=1

(\beta i \cdot M + \gamma i \cdot r + \delta i \cdot l)
\times 

\times 
m\sum 
i=1

\left(  \beta i M\sum 
j=1

\bigm| \bigm| \bigm| fi(\xi j , \^\bfy , \^\bfy \prime , . . . \^\bfy (n), \alpha )
\bigm| \bigm| \bigm| 2+

+\gamma i

r - 1\sum 
j=0

\bigm| \bigm| \bigm| \^y(j)i (t0,\bfw i) - yji

\bigm| \bigm| \bigm| 2+ \delta i

l\sum 
q=1

\bigm| \bigm| \^yi(tq,\bfw i) - yeqi
\bigm| \bigm| 2\right)  .

(7)

The components of the vector function \bfF (t,\bfy ,\bfy \prime , . . . ,\bfy (r), \alpha ) are calculated at test point
(point of reference) ensemble \{ \xi j\} Mj=1; the random components of the ensemble are supposed to
be uniformly distributed on the segment [t0, t\ast ].

We obtain parameters and neural network coefficients while solving the error functional (7)
(or (6)) minimization problem within the constraints (3)

J(\alpha ,\bfw )
\alpha 1,\alpha 2,...,\alpha p
\bfw 1,\bfw 2,...,\bfw m -  -  -  -  -  -  -  - \rightarrow min . (8)

So we get the parameters \alpha \ast 
1, \alpha 

\ast 
2, . . . , \alpha 

\ast 
p and the matrices of the neural network coefficients

\bfw \ast 
1,\bfw 

\ast 
2, . . . ,\bfw 

\ast 
m that minimize the error functional (7) (or (6)). Also we can get the neural

network approximation to the solution in the form

\^\bfy (t) = \^\bfy (t,\bfw \ast 
1, . . . ,\bfw 

\ast 
m), t \in [t0, t\ast ]. (9)

Note that the process of the error functional (7) (or (6)) minimization is being conducted not
up to a global minimum, but up to the moment when the functional value is less than the value
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of a permissible error \eta , i. e. J < \eta . And this functional value J\ast is taken as an approximation to
the error functional global minimum. In order to avoid interruption of the minimization process
at a local minimum we periodically make some regeneration of \{ \xi j\} Mj=1 after a few iterations of
the minimization algorithm.

This approach we are going to used for solution of the creep model parameter identification
problem for uniaxial tension of isotropic aviation steel 45 cylindrical specimens at constant
temperature T = 850 \circ C.

3. Conclusion

The process of the Cauchy problem solution constructing for ODEs system of order r with
unknown parameter set is described with the use of the neural network method. This approach
will be used to solve the creep model parameter identification problem for uniaxial tension of
steel 45 specimens at the constant stress and constant temperature.

In further research we are going to develop the application of neural network technique to the
solution of parameter identification problems for creep and viscoelasticity models using method
of solution continuation with respect to the best parameter [6]. Special attention will be paid
to problems of determining strain-strength characteristics of structural members at a complex
stress state. Problems of this type often encountered in engineering practice. At the moment,
there is a lack of experimental data for them. This fact can complicate a process of constructing
an adequate model. So, before going on to these problems, it is also important to investigate
the use of other forms of neural network basis elements and error functionals for the problem
considered in the paper.
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