УДК 51-72:519.632

О погрешности расчета температурного поля в плоской среде с включениями

Сыромясов А. О., Понкратова Ю. В., Меньшакова Т. В.

Национальный исследовательский Мордовский государственный университет

Одной из сторон изучения современных композитных материалов является изучение распространения тепла в них. Неформальное описание соответствующей задачи таково. Среда содержит включения с иной теплопроводностью. Вдали от этих включений (на условной «бесконечности») поле температуры известно. Требуется выяснить, какие искажения вносят в него инородные тела. Распределение температуры во многих случаях можно считать стационарным.

С математической точки зрения имеется неограниченная область в \mathbb{R}^2 или \mathbb{R}^3 , внутри которой расположены области-включения $\Omega(1), \ldots, \Omega(K)$ с границами $\partial\Omega(1), \ldots, \partial\Omega(K)$. Температура вне включений задается функцией T_f , а внутри k-го включения – функцией $T_p(k)$, соответственно. Для простоты будем считать теплопроводности среды и инородных тел постоянными и равными κ_f , $\kappa_p(1), \ldots, \kappa_p(K)$, соответственно. Тогда в силу стационарности температурного поля

$$\nabla^2 T_f = 0, \quad \nabla^2 T_p(k) = 0, \, k = 1, \dots, K.$$
 (1)

Квадрат символического оператора набла обозначает оператор Лапласа.

На границах инородных тел выполняются условия непрерывности температуры и теплового потока:

$$T_f = T_p(k), \ \kappa_f \frac{\partial T_f}{\partial n} = \kappa_p(k) \frac{\partial T_p(k)}{\partial n}, \quad \vec{x} \in \partial \Omega(k), \ k = 1, \dots, K.$$
(2)

Здесь и далее \vec{x} есть радиус-вектор точки среды относительно начала O некоторой декартовой прямоугольной системы координат (Ox_1x_2 на плоскости или $Ox_1x_2x_3$ в пространстве). Вектор \vec{n} представляет собой единичную внешнюю нормаль к поверхности $\partial \Omega(k)$.

Распределение температуры на бесконечности описывается известной функцией T_{∞} :

$$T_f \to T_\infty(\vec{x}), \quad |\vec{x}| \to \infty.$$
 (3)

Как правило, T_{∞} не более чем линейна по координатам:

$$T_{\infty}(\vec{x}) = T_0 + T_j x_j, \quad T_0 = \text{const}, \ T_j = \text{const}, \ j = 1, 2, 3.$$
 (4)

По повторяющимся индексам производится суммирование в пределах от 1 до размерности пространства (2 в \mathbb{R}^2 , 3 в \mathbb{R}^3).

Простейший пример задачи (1)–(4) разобран в [1]: аналитически найдено распределение температуры вне и внутри одиночной сферической частицы, находящейся в безграничной среде под действием постоянного градиента температуры.

Если в среде расположены хотя бы два инородных тела (даже такой простой формы, как сфера или круг), аналитическое решение поставленной задачи резко усложняется. При решении аналогичных задач о распространении электрического поля используются бисферические или биполярные координаты [3]. Однако этот подход не распространяется на число инородных тел, большее двух, а потому фактически является тупиковым. Т. о., задача (1)–(3) может быть решена либо асимптотическими, либо численными методами.

Применение асимптотических разложений создает две проблемы. Во-первых, такие разложения могут быть расходящимися. Во-вторых, иногда достаточно затруднительно определить, на каком слагаемом следует прервать их, чтобы обеспечить заданную точность вычислений [4].

С другой стороны, проблемой численного решения (помимо очевидного вопроса о выборе метода) является выполнение соотношения (3). Расчетная область в любом случае конечна, поэтому следует выяснить, какими должны быть ее размеры и какие условия задать на ее границах, чтобы хотя бы приближенно удовлетворить условие при $|\vec{x}| \to \infty$.

Соответственно, желательно иметь методику подбора размеров расчетной области, а также хотя бы «экспериментальное» доказательство сходимости асимптотических разложений решения (1)–(3). Решению этих двух проблем для плоской среды и посвящена предлагаемая работа.

Уточним постановку задачи. Всего в среде помещаются две одинаковые круглые частицы $\Omega(1)$ и $\Omega(2)$ с теплопроводностями κ_p и радиусами a; центр первой частицы помещен в начало координат O, а второй – в точку с координатами (r; 0). Температура на бесконечности удовлетворяет (4).

Асимптотический метод решения этой задачи был предложен в [2]. Он связан с представлением T_f и T_p в виде линейной комбинации мультиполей – частных производных от фундаментального решения уравнения Лапласа – а также с введением малого параметра $\varepsilon = a/r$, по которому раскладываются коэффициенты мультипольного представления. В рамках настоящего исследования точность разложения была доведена до ε^5 .

Численно задача решалась с помощью метода конечных элементов в пакете ANSYS Workbench.

Расчетная область была взята в форме квадрата, стороны которого имеют длину H и параллельны координатным осям. Центр квадрата совпадал с точкой O. Если H достаточно велика, то градиент температуры на бесконечности можно описать, задав подходящие ее значения на противоположных сторонах квадрата. Например, если $\nabla T_{\infty} = (T_1, 0)$, то можно положить

$$T_1 = \frac{T_{right} - T_{left}}{H},\tag{5}$$

где $T_{right} = T_{\infty}(H/2, x_2), T_{left} = T_{\infty}(-H/2, x_2)$ – постоянные значения T_{∞} на правой и левой сторонах квадрата.

На самом деле (5) выполняется лишь приближенно: частицы взвеси вносят искажение в распределение температуры, так что T_f на сторонах квадрата не равна T_{∞} . Возникает вопрос: как подобрать H, чтобы нивелировать эту ошибку.

С этой целью вначале выполняется расчет для среды с единственным включением $\Omega(1)$. В этом случае аналитическое решение задачи (1)–(4) известно точно, что позволяет находить относительную погрешность численного решения. Более подробно, полученные приближенные значения возмущения температуры сравниваются с точными, а затем погрешность осредняется вдоль окружностей различных радиусов с общим центром O. Величина H подбирается так, чтобы средняя погрешность $\langle \delta_T \rangle$ на всех интересующих нас окружностях (т.е. в интересной для нас окрестности частицы) не превышала заданную величину; в качестве таковой было выбрано значение 10%.

Основываясь на полученных результатах, определяется размер расчетной области и в задаче о двух включениях. Для этого, используя разложение [2], доказывается, что на больших расстояниях от $\Omega(1)$ и $\Omega(2)$ суммарный эффект от присутствия в среде двух тел такой же, как и от одного тела Ω_F с той же теплопроводностью, но большего радиуса. Заменив систему « $\Omega(1) + \Omega(2)$ » фиктивной частицей Ω_F , можно определить подходящий размер расчетной области для нее, а значит, и для исходной системы.

Дополнительная трудность при моделировании термодинамического взаимодействия двух частиц состоит в том, что вектор ∇T_{∞} может быть не параллельным оси Ox_1 , на которой лежат центры обеих частиц. Имеется два способа решения этой проблемы. Вопервых, можно воспользоваться линейностью исходной задачи и выполнить два расчета: один – для ∇T_{∞} , направленного вдоль оси Ox_1 , второй – для ∇T_{∞} , направленного вдоль Ox_2 . Во-вторых, на границе расчетной области можно задавать граничные условия, более сложные, чем (5) и зависящие от параметра.

Результаты расчетов затем сравниваются с численными значениями возмущения температуры, полученного в ходе асимптотического разложения. Для исследования сходимости асимптотического разложения рассматривается несколько различных его «срезок»: с точностью до $\varepsilon^0, \varepsilon^2, \ldots, \varepsilon^5$.

Литература

- 1. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Т. VI. Гидродинамика. М. : Наука. Гл. ред. физ.-мат. лит., 1986. 736 с.
- 2. Меньшакова Т. В., Сыромясов А. О. Термодинамическое взаимодействие двух круглых частиц на плоскости // Математическое и компьютерное моделирование естественно-научных и социальных проблем. Материалы XIII Международной научно-технической конференции молодых специалистов, аспирантов и студентов (Пенза, 3–6 июня 2019 г.). Пенза, 2019. С. 167–171.
- 3. Liu H., Bau H. H. The dielectrophoresis of cylindrical and spherical particles submerged in shells and in semi-infinite media // Physics of Fluids. 2004. V. 16. N 5. P. 1217–1228.
- 4. Naifeh Ali H. Perturbation methods. John Wiley and Sons, 2000.

MSC2020 80A19, 80M10, 80M35, 35Q79

On the error of calculation of the temperature field in plane medium with inclusions

A. O. Syromyasov, Yu. V. Ponkratova, T. V. Menshakova National Research Mordovia State University