УДК 51-74+665.64

Применение 16-компонентной кинетической модели каталитического крекинга для оценки активности катализаторов*

Маннанова Г. И.¹, Бикбова Г. Р.², Губайдуллин И. М.^{1,2}, Коледина К. Ф.^{1,2}

Институт нефтехимии и катализа УФИЦ РАН¹, Уфимский государственный нефтяной технический университет²

Аннотация: В статье представлены расчеты кинетических параметров процесса каталитического крекинга вакуумного газойля для двух различных катализаторов. Для расчетов применена разработанная авторами 16-компонентная кинетическая модель каталитического крекинга, с помощью которой можно оценивать количественные и качественные показатели целевых и побочных продуктов процесса: бензина, пропан-пропиленовой и бутан-бутиленовой фракций, легких и тяжелых каталитических газойлей. Для решения прямой задачи, представляющей собой задачу Коши для системы обыкновенных дифференциальных уравнений, применен метод Рунге-Кутта 4 порядка, для решения обратной задачи, заключающейся в подборе констант скорости химических превращений, использован метод прямого поиска минимального значения суммы отклонений расчетных концентраций от экспериментальных. Энергия активации определена по уравнению Аррениуса. В результате расчетов приведены кинетические параметры: константы скоростей реакций, энергии активации для процесса каталитического крекинга с применением двух катализаторов, а также их сравнение.

Ключевые слова: катализатор, каталитический крекинг, кинетическая модель, константа скорости реакции, прямая и обратная задача кинетики, энергия активации.

1. Введение

Каталитический крекинг является важнейшим процессом получения компонентов бензина. В нефтепереработке применением данного процесса увеличивают глубину переработки нефти за счет вовлечения в процесс тяжелых фракций. Катализат характеризуется высоким октановым числом, малым содержанием ароматических соединений [1]. Кроме того, продуктами процесса являются компоненты сырья для нефтехимических процессов: пропан-пропиленовая и бутан-бутиленовая фракции, а также компоненты дизельных топлив. В связи с этим моделирование процесса каталитического крекинга и оценка активности катализаторов являются актуальными задачами.

2. Разработка кинетической модели

Ранее авторами была проведена работа по изучению и анализу опубликованных в отечественной и зарубежной литературе существующих моделей процесса каталитического крекинга [2]. В зависимости от назначения существующие модели имеют ряд преимуществ

^{*}Работа выполнена по теме «Разработка новых теоретических подходов и программного обеспечения для моделирования сложных химических процессов и поиска соединений с заданными физико-химическими свойствами» (Регистрационный номер: АААА-А19-119022290011-6)

и недостатков. Некоторые модели содержат малое число компонентов и могут быть легко рассчитаны, но не позволяют оценить качество получаемых продуктов. Самые простые модели позволяют оценить лишь количество целевого продукта – бензина каталитического крекинга. Более сложные модели являются более трудоемкими в расчете. Например, в работе [3] описана одиннадцатикомпонентная модель, описывающая реакции крекинга каждой из групп углеводородов. Однако бензин представлен лишь одним компонентом, что затрудняет определение качественных показателей продукта, таких как октановое число, содержание олефиновых и ароматических углеводородов. Авторами проведена работа по разработке модели, позволяющей учесть не только количественные, но и качественные показатели бензина (его компонентный состав), а также выход ценных попутных продуктов: пропан-пропиленовая и бутан-бутиленовая фракции, компонент дизельного топлива. В ходе исследования были разработаны несколько моделей [4-6]. Основным результатом работы является новая 16-компонентная модель [7].

3. 16-компонентная кинетическая модель

Исследование 16-компонентной модели позволяет оценить количество и состав получаемого бензина каталитического крекинга, выход ценного для нефтехимических производств сырья — пропан-пропиленовой и бутан-бутиленовой фракций, а также количественные и качественные показатели фракции легкого каталитического газойля, являющегося компонентом дизельного топлива.

Схема превращений, используемая в предложенной модели, приведена на рис. 1. В таблице 1 приведены обозначения.

Рис. 1. 16-компонентная кинетическая модель

Отметим, что тяжелые углеводороды входят в состав сырья процесса каталитического крекинга – вакуумного газойля, а также в состав продукта – тяжелого каталитического газойля. Углеводороды средней массы образуют легкий каталитический газойль, являющийся компонентом дизельного топлива, а легкие углеводороды образуют бензин каталитического крекинга.

Обозначение	Компонент	Средняя молекулярная масса, кг/кмоль
Nh, y ₁	Тяжелые нафтены (C ₂₄ -C ₄₀)	400
Ph, y_2	Тяжелые парафины (C ₂₄ -C ₄₀)	400
Ah, y_3	Тяжелая ароматика ($\mathrm{C}_{24}\text{-}\mathrm{C}_{40})$	400
Nm, y_4	Средние нафтены (C ₁₃ -C ₂₃)	200
$\ \ Pm,y_5$	Средние парафины (C ₁₃ -C ₂₃)	200
Om, y ₆	Средние олефины (С ₁₃ -С ₂₃)	200
Am, y ₇	Средняя ароматика (C ₁₃ -C ₂₃)	200
Nl, y ₈	Легкие нафтены (C ₅ -C ₁₂)	100
i-Pl, y ₉	Легкие изопарафины (\mathbf{C}_5 - \mathbf{C}_{12})	100
Al, y ₁₀	Легкая ароматика (C_5 - C_{12})	100
Ol, y ₁₁	Легкие олефины (C ₅ -C ₁₂)	100
C, y ₁₂	Смолы + кокс	-
DG, y ₁₃	Жирный газ	16
PPF, y ₁₄	Пропан-пропиленовая фракция	43
BBF, y_{15}	Бутан-бутиленовая фракция	57
n-Pl, y ₁₆	Легкие нормальные парафины (C_5-C_{12})	100

Таблица 1. Обозначения в кинетической модели каталитического крекинга

Кинетическая модель процесса описывается системой обыкновенных дифференциальных уравнений:

$$\begin{aligned} \frac{d[y_1]}{dt} &= -k_1[y_1] - k_8[y_1] \\ \frac{d[y_2]}{dt} &= -k_2[y_2] - k_9[y_2] \\ \frac{d[y_3]}{dt} &= -k_3[y_3] - k_{10}[y_3] - k_{15}[y_3] \\ \frac{d[y_4]}{dt} &= k_1[y_1] - k_4[y_4] - k_{11}[y_4] \\ \frac{d[y_5]}{dt} &= k_2[y_2] - k_5[y_5] - k_{12}[y_5] - k_{30}[y_5] \\ \frac{d[y_6]}{dt} &= k_3[y_3] - k_6[y_6] - k_{13}[y_6] - k_{16}[y_6] \\ \frac{d[y_7]}{dt} &= k_8[y_1] + k_9[y_2] + k_{10}[y_3] - k_7[y_7] - k_{14}[y_7] \\ \frac{d[y_8]}{dt} &= k_5[y_5] + k_{14}[y_7] - k_{21}[y_9] - k_{22}[y_9] - k_{32}[y_9] + k_{31}[y_{16}] \\ \frac{d[y_{90}]}{dt} &= k_6[y_6] - k_{17}[y_{10}] - k_{24}[y_{10}] - k_{25}[y_{10}] - k_{26}[y_{10}] \\ \frac{d[y_{11}]}{dt} &= k_{11}[y_4] + k_{12}[y_5] + k_{13}[y_6] + k_7[y_7] - k_{27}[y_{11}] - k_{29}[y_{11}] \\ \frac{d[y_{12}]}{dt} &= k_{18}[y_8] + k_{21}[y_9] + k_{24}[y_{10}] + k_{27}[y_{11}] \\ \frac{d[y_{11}]}{dt} &= k_{19}[y_8] + k_{22}[y_9] + k_{25}[y_{10}] + k_{28}[y_{11}] \\ \frac{d[y_{11}]}{dt} &= k_{19}[y_8] + k_{22}[y_9] + k_{26}[y_{10}] + k_{29}[y_{11}] \\ \frac{d[y_{11}]}{dt} &= k_{19}[y_8] + k_{22}[y_9] + k_{26}[y_{10}] + k_{29}[y_{11}] \\ \frac{d[y_{11}]}{dt} &= k_{19}[y_8] + k_{23}[y_9] + k_{26}[y_{10}] + k_{29}[y_{11}] \\ \frac{d[y_{12}]}{dt} &= k_{19}[y_8] + k_{23}[y_9] + k_{26}[y_{10}] + k_{29}[y_{11}] \\ \frac{d[y_{12}]}{dt} &= k_{30}[y_5] - k_{31}[y_{16}] + k_{32}[y_9] \end{aligned}$$

Здесь y_i – текущая концентрация *i*-го компонента в смеси (нумерация компонентов приведена в таблице 1), k_j – константа *j*-ой реакции (нумерация реакций приведена ниже в таблицах 2-4).

Разделение легких парафинов на парафины нормального и изо-строения позволит оценить октановое число, так как оно напрямую зависит от структуры углеродной цепи: изопарафины имеют высокое октановое число, тогда как парафины нормального строения – низкое [8].

4. Результаты расчетов для 16-компонентной модели

В работе приведен расчет параметров кинетической модели и сравнение активности катализаторов, применяемых на двух установках каталитического крекинга на разных заводах.

На основе производственных данных из статьи [9], которые относятся к секции C-200 на установке каталитического крекинга KT-1/1 OAO «Газпромнефть-ОНПЗ», был произведен расчет констант скоростей реакций при разных температурах, после чего были оценены энергии активации элементарных стадий процесса.

Расчеты проводились с применением программного обеспечения MATLAB. Для решения задачи Коши (прямой задачи) использовался метод Рунге-Кутта 4 порядка. Константы скоростей реакций находились из условия минимума функции:

$$z(k_1...k_{32}) = \sum_{i=1}^{16} |y_i - y_{exp\ i}|$$
⁽²⁾

где $y_{\rm exp~i}$ – значение концентрации компонентов в реакционной смеси, полученных из производственных данных. Для поиска минимума данной функции (решения обратной задачи кинетики) применялся метод прямого поиска [10, 11]. Методы прямого поиска отличаются тем, что в них направление движения к оптимуму определяется только по значениям целевой функции, т. е. не используются производные функции. Все они являются алгоритмами исследования образца, порождающими последовательность точек, приближающихся к минимуму. На каждом шаге определяется набор точек вокруг текущей точки, называемый окружением или петлей. Точки окружения образуются добавлением к текущей точке произведения скаляра на векторы, совокупность которых и называют шаблоном или образцом. Если в окружении находится точка с меньшим значением целевой функции, чем в текущей точке, она становится текущей для следующего шага алгоритма. Алгоритм для создания окружения использует векторы фиксированных направлений, например, 2N положительный базис, содержащий N векторов единичной матрицы размера $N \times N$ и N векторов противоположного знака, где N – число независимых переменных в целевой функции. Упомянутый выше скаляр, используемый для формирования окружения, называется размером окружения и обозначается d^{m} . Если x^{k} – текущая точка, а y^{i} – точка ее окружения, то она находится по формуле:

$$y^i = x^k + d^m v_i, i = 1, ..., 2N$$
 или $i = 1, ..., N + 1.$ (3)

На каждом шаге алгоритм обходит точки окружения, вычисляя в них значение целевой функции. Если среди них окажется точка со значением целевой функции меньше, чем у текущей точки, она становится новой текущей, а обход считается успешным. Обход прекращается, как только найдена точка с лучшим, чем у текущей точки, значением целевой функции, и такая точка становится новой текущей. При неуспешном обходе текущая точка не изменяется. На каждой итерации размер окружения изменяется: при успешном обходе он умножается на коэффициент расширения, при неуспешном – на коэффициент сужения (например, 2 и 0.5 соответственно). Алгоритм завершает работу при выполнении одного или нескольких критериев окончания, значения которых можно изменять через функцию установки параметров поиска.

Энергия активации рассчитывается согласно уравнению Аррениуса:

$$k = k_0 \, \exp\left(\frac{E_a}{RT}\right),\tag{4}$$

где k – константа равновесия, с⁻¹, k_0 – предэкспоненциальный множитель, с⁻¹, E_a – энергия активации, ккал/(моль · K), T – температура, К, R – газовая постоянная, ккал/моль.

Результаты расчетов констант равновесия приведены в таблице 2, расчетные значения энергии активации – в таблице 4.

На основе производственных данных, которые относятся к установке каталитического крекинга ОАО «Газпром нефтехим Салават», был произведен расчет констант скоростей реакций при разных температурах, после чего были оценены энергии активации.

Результаты расчетов констант равновесия приведены в таблице 3, расчетные значения энергии активации – в таблице 4.

Таблица 2. Расчетные значения констант скоростей химических реакций процесса каталитического крекинга, Омский НПЗ

N⁰	Реакция	Константа k, с ⁻¹ при 500°С	Константа k, с ⁻¹ при 522°С	Nº	Реакция	Константа k, с ⁻¹ при 500°С	Константа k, с ⁻¹ при 522°С
1	Nh-Nm	1.4880	4.7831	19	Nl-PPF	0.0508	0.0947
2	Ph-Pm	1.6741	5.8916	20	Nl-BBF	0.2699	0.6832
3	Ah-Am	0.8196	2.3777	21	Pl-DG	0.2017	0.4855
4	Nm-Nl	1.1886	7.2230	22	Pl-PPF	0.0490	0.1025
5	Pm-Pl	1.7259	6.2488	23	Pl-BBF	0.0350	0.0616
6	Am-Al	0.9966	2.9949	24	Al-DG	0.0009	0.0014
7	Om-Ol	1.5029	4.9828	25	Al-PPF	0.0009	0.0014
8	Nh-Om	0.4034	1.0159	26	Al-BBF	0.0008	0.0011
9	Ph-Om	0.0518	0.1096	27	Ol-DG	0.0490	0.1009
10	Ah-Om	0.0226	0.0375	28	Ol-PPF	0.2314	0.5736
11	Nm-Ol	1.5955	5.4524	29	Ol-BBF	0.2014	0.4887
12	Pm-Ol	0.9364	2.6251	30	Pm-nPl	0.0016	0.0026
13	Am-Ol	0.0008	0.0012	31	nPl-iPl	2.4736	9.9771
14	Om-Pl	0.9034	2.4414	32	iPl-nPl	0.5648	1.4649
15	Ah-C	0.0698	0.1509	33	nPl-DG	0.0242	0.04129
16	Am-C	0.0806	0.1785	34	nPl-PPF	0.1350	0.3134
17	Al-C	0.1993	0.4738	35	nPl-BBF	2.4244	0.0695
18	Nl-DG	0.0998	0.2291				

Таблица 3. Расчетные значения констант скоростей химических реакций процесса каталитического крекинга, ГНХС, Салават

N⁰	Реакция	Константа k, с ⁻¹ при 500°С	Константа k, с ⁻¹ при 520°С	Nº	Реакция	Константа k, с ⁻¹ при 500°С	Константа k, с ⁻¹ при 520°С
1	Nh-Nm	0.7882	2.0401	19	Nl-PPF	0.0006	0.0010
2	Ph-Pm	0.2501	0.7271	20	Nl-BBF	0.0422	0.0987
3	Ah-Am	0.2510	0.7172	21	Pl-DG	1.2881	4.2113
4	Nm-Nl	0.7829	2.0381	22	Pl-PPF	0.5553	1.4958
5	Pm-Pl	0.0441	0.0985	23	Pl-BBF	1.0298	3.4227
6	Am-Al	0.2490	0.7488	24	Al-DG	3.5343	12.5130
7	Om-Ol	1.3346	4.2309	25	Al-PPF	2.7092	8.9193
8	Nh-Om	0.2650	0.7238	26	Al-BBF	3.8750	14.4674
9	Ph-Om	0.8066	2.0477	27	Ol-DG	0.0231	0.0566
10	Ah-Om	0.1293	0.3971	28	Ol-PPF	0.0451	0.0962
11	Nm-Ol	0.3481	0.9579	29	Ol-BBF	0.0035	0.0066
12	Pm-Ol	0.9401	2.3375	30	Pm-nPl	0.0051	0.0095
13	Am-Ol	0.0757	0.1535	31	nPl-iPl	3.5333	12.1642
14	Om-Pl	0.0002	0.0004	32	iPl-nPl	0.0027	0.0052
15	Ah-C	0.0002	0.0003	33	nPl-DG	3.8386	15.0818
16	Am-C	0.0100	0.0251	34	nPl-PPF	3.4770	11.6317
17	Al-C	1.3528	4.2217	35	nPl-BBF	3.8095	13.8525
18	Nl-DG	0.1767	0.5501				

Nº	Реакция	$E_{\rm a}^{}, { m Om-}$ ский НПЗ	$E_{\rm a}, \ \Gamma {\rm XHC}$ Салават	Nº	Реакция	$E_{\rm a}, ext{ Om-}$ ский НПЗ	$E_{\rm a}, \ \Gamma XHC$ Салават
1	Nh-Nm	145,1786	116.2619	19	Nl-PPF	80.1129	64.5642
2	Ph-Pm	156,3636	129.5487	20	Nl-BBF	116.8384	101.3442
3	Ah-Am	132.8918	127.4325	21	Pl-DG	110.8221	145.2705
4	Nm-Nl	166.6281	116.9618	22	Pl-PPF	94.3753	120.8539
5	Pm-Pl	159.8797	95.9356	23	Pl-BBF	73.3645	147.1003
6	Am-Al	137.1232	133.6737	24	Al-DG	54.7007	155.8576
7	Om-Ol	149.0194	141.5264	25	Al-PPF	58.6635	146.7365
8	Nh-Om	115.8556	125.2789	26	Al-BBF	50.6081	162.4363
9	Ph-Om	95.8317	113.8992	27	Ol-DG	92.6049	106.5227
10	Ah-Om	66.2303	135.6849	28	Ol-PPF	114.3668	90.2752
11	Nm-Ol	152.7455	123.0865	29	Ol-BBF	111.8452	74.8527
12	Pm-Ol	128.5119	111.4897	30	Pm-nPl	62.5042	71.5189
13	Am-Ol	46.3767	84.3387	31	nPl-iPl	173.0303	152.4299
14	Om-Pl	123.9727	57.1877	32	iPl-nPl	119.2621	78.0976
15	Ah-C	98.4113	49.3350	33	nPl-DG	69.8484	168.6774
16	Am-C	101.2162	109.0315	34	nPl-PPF	106.6438	148.9029
17	Al-C	109.2716	139.6102	35	nPl-BBF	76.7843	159.1914
18	Nl-DG	105.5770	137.6634				

Таблица 4. Расчетные значения энергий активаций (ккал/моль \cdot K) химических реакций процесса каталитического крекинга

Для оценки активности катализаторов, посчитаны конверсия, селективность по бензину и выход бензина. Результаты расчетов приведены в таблице 5.

Из расчетов, можно сделать вывод, что катализатор, применяемый на Омском HПЗ эффективнее катализатора, применяемого на заводе ГХНС-Салават, в диапазоне температур 500-522°С.

Показатель	Омский НПЗ, 500°С	ГХНС Сала- ват, 500°С	Омский НПЗ, 522°С	ГХНС Сала- ват, 520°С
Конверсия, %	0.91	0.73	0.92	0.67
Селективность по бензину, %	0.52	0.47	0.53	0.44
Выход бензина, %	0.48	0.35	0.43	0.30

Таблица 5. Расчетные значения показателей активности катализаторов процесса катализического крекинга

5. Заключение

Таким образом, результатом сравнительного анализа является вывод об адекватности разработанной 16-компонентной модели кинетики каталитического крекинга. Показано, что данную модель можно применять для расчета процесса каталитического крекинга при разных условиях и при разных катализаторах. Следует отметить, что каждый катализатор характеризуется своим набором констант скоростей химических реакций и энергий активаций, по которым можно рассчитать состав реакционной смеси в любой момент времени, при любом составе сырья и при любой температуре. Данная модель позволяет оценить качество и количество получаемых продуктов процесса каталитического крекинга без проведения лабораторных опытов или промышленных пробегов.

Литература

- 1. Кондрашев Д. О. Развитие технологии каталитического крекинга: от неподвижного к псевдоожиженному слою // Нефтепереработка и нефтехимия. 2018. № 6. С. 3-9.
- Исламова Г.И., Губайдуллин И.М. Обзор и анализ математических моделей процесса каталитического крекинга // Марчуковские научные чтения – 2019: Тезисы Международной конференции "Актуальные проблемы вычислительной и прикладной математики"Новосибирск: ИПЦ НГУ, 2019. С. 126-127.
- 3. Барбоса А.С., Лопес Г.С. Трехмерное моделирование реакций каталитического крекинга в реакторе промышленного масштаба с использованием 11-компонентной кинетической модели // Расчеты в химической инженерии. № 32. 2013. С.637-642.
- Маннанова Г.И., Губайдуллин И.М., Коледина К.Ф. Тринадцатикомпонентная кинетическая модель процесса каталитического крекинга // Уфимская осенняя математическая школа: Сборник тезисов Международной научной конференции. 2019. С. 142–144.
- Маннанова Г.И., Губайдуллин И.М., Бикбова Г.Р. Разработка четырнадцатикомпонентной кинетической модели каталитического крекинга // Математическое моделирование процессов и систем: Материалы IX Международной молодежной научно-практической конференции. 2019. С. 235-240.
- 6. Маннанова Г.И., Губайдуллин И.М., Коледина К.Ф. Внутренний параллелизм при решении обратной задачи кинетики процесса каталитического крекинга вакуумного

газойля // В сборнике: Параллельные вычислительные технологии (ПаВТ'2020). Короткие статьи и описания плакатов. 2020. С. 205-210.

- Бикбова Г.Р., Губайдуллин И.М., Маннанова Г.И. Шестнадцатикомпонентная кинетическая модель процесса каталитического крекинга // В книге: Уфимская осенняя математическая школа – 2020. Сборник тезисов международной научной конференции. В 2-х ч. Уфа, 2020. С. 173-176.
- Смышляева Ю.А., Иванчина Э.Д., Кравцов А.В., Зыонг Ч.Т., Фан Ф. Разработка базы данных по октановым числам для математической модели процесса компаундирования товарных бензинов // Известия томского политехнического университета. 2011. № 3. С. 75-80.
- 9. Иванчина Э.Д., Ивашкина Е.Н., Назарова Г.Ю., Стебенева В.И., Шафран Т.А., Киселева С.В., Храпов Д.В., Короткова Н.В., Есипенко Р.В. Разработка кинетической модели процесса каталитического крекинга // Катализ в нефтеперерабатывающей промышленности. 2017. № 6. С. 477-486.
- 10. Коледина К.Ф., Коледин С.Н., Губайдуллин И.М. Многоцелевая оптимизация условий проведения каталитической реакции с базой данных целевых функций // Математическое моделирование процессов и систем: Материалы VIII Международной молодежной научно-практической конференции. 2018. С. 15-18.
- 11. Коледин С.Н., Габитов С.А., Коледина К.Ф., Губайдуллин И.М. Информационная система оптимизации констант скоростей каталитической реакции с выбором параметров // Математическое моделирование процессов и систем: Материалы VIII Международной молодежной научно-практической конференции. 2018. С. 19-22.

MSC2020 92E20

Application of a 16-component kinetic model of catalytic cracking to evaluate the activity of catalysts

G. I. Mannanova¹, G. R. Bikbova², I. M. Gubaydullin^{1,2}, K. F. Koledina^{1,2}

Institute of Petrochemistry and Catalysis of the Russian Academy of Sciences¹, Ufa State Petroleum Technological University²

Abstract: This article presents calculations of the kinetic parameters of the process of catalytic cracking of vacuum gas oil for two different catalysts. For calculations, a 16-component kinetic model of catalytic cracking developed by the authors is used, with the help of which it is possible to estimate the quantity and quality indicators of the target and by-products of the process: gasoline, propane-propylene and butane-butylene fractions, light and heavy catalytic gas oils. To solve the direct problem, which is a Cauchy problem for a system of differential equations, the Runge-Kutta method of 4 orders is applied, to solve the inverse problem, which consists in selecting the rate constants of chemical transformations, the method of direct search for the minimum value of the sum of deviations of calculated concentrations from experimental ones is used. The activation energy was determined by the Arrhenius equation. As a result of the calculations, the kinetic parameters are given: the constants of the reaction rates, the activation energies for the process of catalytic cracking using two catalysts, as well as their comparison.

Keywords: activation energy, catalytic cracking, catalyst, direct and inverse kinetics problem, kinetic model, reaction rate constant

References

- 1. D.O. Kondrashov. Development of catalytic cracking technology: from a stationary to a fluidized bed. Oil refining and petrochemistry. 2018. No. 6. pp. 3-9.
- 2. G.I. Islamova, I.M. Gubaydullin. Review and analysis of mathematical models of the catalytic cracking process. Marchuk scientific readings 2019. pp. 126-127.
- A.C. Barbosa, G.C. Lopes. Three dimensional simulation of catalytic cracking reactions in an industrial scale riser using a 11-lump kinetic. Chemical engineering transactions. 2013. Vol. 32. pp. 637-642.
- 4. G.I. Mannanova, I.M. Gubaydullin, K.F. Koledina. 13-lump kinetic model of the catalytic cracking process. Ufa Autumn Mathematical School: Collection of abstracts of the International Scientific Conference. 2019. pp. 142–144.
- G.I. Mannanova, I.M. Gubaydullin, G.R. Bikbova. Development of a fourteen-component kinetic model of catalytic cracking. Mathematical modeling of processes and systems: Materials of the IX International Youth Scientific and Practical Conference. 2019. pp. 235-240.
- G.I. Mannanova, I.M. Gubaydullin, K.F. Koledina. Internal parallelism in solving the inverse problem of the kinetics of the process of catalytic cracking of vacuum gas oil. In the collection: Parallel Computing Technologies. Short articles and poster descriptions. 2020. pp. 205-210.

- G.R. Bikbova, I.M. Gubaydullin, G.I. Mannanova. A sixteen-component kinetic model of the catalytic cracking process. In the book: Ufa Autumn Mathematical School-2020. Collection of abstracts of the international scientific conference. 2020. pp. 173-176.
- 8. Yu.A. Smyshlyaeva, E.D. Ivanchina, A.V. Kravtsov, C.T. Zyong, F. Fan. Development of an octane number database for a mathematical model of the compounding process of commercial gasoline. Izvestiya Tomsk Polytechnic University. 2011. Vol. 3. pp. 75-80.
- E.D. Ivanchina, E.N. Ivashkina, G.Yu. Nazarova, V.I. Stebneva, T.A. Shafran, S.V. Kiseleva, D.V. Khrapov, N.V. Korotkova, R.V. Yesipenko. Development of a kinetic model of the catalytic cracking process. Catalysis in the oil refining industry. 2017. Vol. 6. pp. 477-486.
- K.F. Koledina, S.N. Koledin, I.M. Gubaydullin. Multi-purpose optimization of conditions for conducting a catalytic reaction with a database of objective functions. Mathematical modeling of processes and systems: Materials of the VIII International Youth Scientific and Practical Conference. 2018. pp. 15-18.
- S.N. Koledin, S.A. Gabitov, K.F. Koledina, I.M. Gubaydullin. Information system for optimizing the rate constants of a catalytic reaction with a choice of parameters. Mathematical modeling of processes and systems: Materials of the VIII International Youth Scientific and Practical Conference. 2018. pp. 19-22.