УДК 519.63

К приближённому решению обратных коэффициентных задач для уравнения теплопроводности

Бойков И.В.¹, Рязанцев В.А.¹

Пензенский государственный университет¹

В работе рассматривается проблема восстановления неизвестных коэффициентов для одного класса уравнений теплопроводности. Для решения указанной проблемы в работе проводится построение итерационного метода, в основе которого лежит непрерывный метод решения нелинейных операторных уравнений, предложенный ранее в работе [1]. Основная идея предлагаемого метода заключается в составлении системы нелинейных параметрических дифференциальных уравнений относительно неизвестных коэффициентов и последующем приближённом решении этой системы одним из известных численных методов. Среди основных достоинств предлагаемого метода следует в первую очередь назвать универсальность, а также простоту, высокую точность и устойчивость к возмущениям исходных данных. Наконец, преимуществом упомянутого метода является то, что его реализация требует дополнительного знания решения исходного параболического уравнения не более чем в конечном множестве точек. Решение модельных примеров иллюстрирует эффективность предложенных методов.

Рассмотрим следующую задачу Коши для двухмерного параболического дифференциального уравнения:

$$\frac{\partial u(t, x_1, x_2)}{\partial t} = a \left[\frac{\partial^2 u(t, x_1, x_2)}{\partial x_1^2} + \frac{\partial^2 u(t, x_1, x_2)}{\partial x_2^2} \right] + bu(t, x_1, x_2), \tag{1}$$

$$u(0, x_1) = \varphi(x_1, x_2), \tag{2}$$

где $-\infty < x_1 < \infty, -\infty < x_2 < \infty, 0 \leqslant t \leqslant T$, а коэффициент a будем считать положительным. Предположим, что дополнительно известными являются значения решения $u(t^{(1)}, x_1^{(1)}, x_2^{(1)})$ и $u(t^{(2)}, x_1^{(2)}, x_2^{(2)})$.

В указанных условиях ставится и решается задача об одновременном восстановлении неизвестных коэффициентов a, b уравнения (1).

С целью решения поставленной выше задачи введём в рассмотрение следующую замену неизвестной функции [2]:

$$v(t, x_1, x_2) = u(t, x_1, x_2)e^{bt}. (3)$$

Подстановка формулы (3) в уравнения (1)-(2) приводит к следующей задаче:

$$\frac{\partial v(t, x_1, x_2)}{\partial t} = a \left[\frac{\partial^2 v(t, x_1, x_2)}{\partial x_1^2} + \frac{\partial^2 v(t, x_1, x_2)}{\partial x_2^2} \right],\tag{4}$$

$$v(0, x_1, x_2) = \varphi(x_1, x_2). \tag{5}$$

Общее решение задачи (4)-(5) даётся следующей формулой [2]:

$$v(t, x_1, x_2) = \frac{1}{4\pi at} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left[-\frac{(x_1 - \xi)^2 + (x_2 - \eta)^2}{4at}\right] \varphi(\xi, \eta) \, d\xi \, d\eta. \tag{6}$$

Из формул (5)-(6) следует, что общее решение задачи (1)-(2) записывается следующим образом:

$$u(t,x) = \frac{e^{bt}}{4\pi at} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left[-\frac{(x_1 - \xi)^2 + (x_2 - \eta)^2}{4at}\right] \varphi(\xi,\eta) \, d\xi \, d\eta. \tag{7}$$

Приняв последовательно $(t, x_1, x_2) = (t^{(1)}, x_1^{(1)}, x_2^{(1)})$ и $(t, x_1, x_2) = (t^{(2)}, x_1^{(2)}, x_2^{(2)})$, запишем на основании формулы (7) следующую систему уравнений:

$$\begin{cases}
\frac{e^{bt^{(1)}}}{4\pi at^{(1)}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left[-\frac{(x_1^{(1)} - \xi)^2 + (x_2^{(1)} - \eta)^2}{4at^{(1)}}\right] \varphi(\xi, \eta) \, d\xi \, d\eta - u(t^{(1)}, x_1^{(1)}, x_2^{(1)}) = 0, \\
\frac{e^{bt^{(2)}}}{4\pi at^{(2)}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left[-\frac{(x_1^{(2)} - \xi)^2 + (x_2^{(2)} - \eta)^2}{4at^{(2)}}\right] \varphi(\xi, \eta) \, d\xi \, d\eta - u(t^{(2)}, x_1^{(2)}, x_2^{(2)}) = 0.
\end{cases} \tag{8}$$

Введём в рассмотрение вспомогательные функции $\bar{a}(\sigma)$, $\bar{b}(\sigma)$ ($\sigma \geqslant 0$), связанные с соответствующими коэффициентами a и b равенствами $\lim_{\sigma \to \infty} \bar{a}(\sigma) = a$, $\lim_{\sigma \to \infty} \bar{b}(\sigma) = b$. Системе (8) ставится в соответствие следующая система интегро-дифференциальных уравнений:

$$\begin{cases}
\frac{d\bar{a}(\sigma)}{d\sigma} = \frac{e^{\bar{b}(\sigma)t^{(1)}}}{4\pi\bar{a}(\sigma)t^{(1)}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left[-\frac{(x_1^{(1)} - \xi)^2 + (x_2^{(1)} - \eta)^2}{4\bar{a}(\sigma)t^{(1)}}\right] \varphi(\xi, \eta) \, d\xi \, d\eta - u(t^{(1)}, x_1^{(1)}, x_2^{(1)}), \\
\frac{d\bar{b}(\sigma)}{d\sigma} = \frac{e^{\bar{b}(\sigma)t^{(2)}}}{4\pi\bar{a}(\sigma)t^{(2)}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left[-\frac{(x_1^{(2)} - \xi)^2 + (x_2^{(2)} - \eta)^2}{4\bar{a}(\sigma)t^{(2)}}\right] \varphi(\xi, \eta) \, d\xi \, d\eta - u(t^{(2)}, x_1^{(2)}, x_2^{(2)}).
\end{cases}$$

Для приближённого решения системы (9) воспользуемся методом Эйлера. Пусть $\Phi>0$ — фиксированное вещественное число. Обозначим $\theta=\frac{\Phi}{L}$, где L — достаточно большое целое положительное число. Система уравнений (9) аппроксимируется следующей разностной схемой:

$$\begin{cases}
\bar{a}_{j+1} = \bar{a}_j + \theta \left\{ \frac{e^{\bar{b}_j t^{(1)}}}{4\pi \bar{a}_j t^{(1)}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left[-\frac{(x_1^{(1)} - \xi)^2 + (x_2^{(1)} - \eta)^2}{4\bar{a}_j t^{(1)}} \right] \varphi(\xi, \eta) \, d\xi \, d\eta - \\
- u(t^{(1)}, x_1^{(1)}, x_2^{(1)}) \right\}, \\
\bar{b}_{j+1} = \bar{b}_j + \theta \left\{ \frac{e^{\bar{b}_j t^{(2)}}}{4\pi \bar{a}_j t^{(2)}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left[-\frac{(x_1^{(2)} - \xi)^2 + (x_2^{(2)} - \eta)^2}{4\bar{a}_j t^{(2)}} \right] \varphi(\xi, \eta) \, d\xi \, d\eta - \\
- u(t^{(2)}, x_1^{(2)}, x_2^{(2)}) \right\}.
\end{cases} (10)$$

В формуле (10) используются обозначения $\bar{a}_j = \bar{a}(\sigma_j), \; \bar{b}_j = \bar{b}(\sigma_j), \;$ где $\sigma_j = j\theta, j = \overline{0,L-1}.$

В качестве результата работы описанного алгоритма фиксируется пара значений \bar{a}_L и \bar{b}_L .

Замечание 1. Двойные интегралы в правых частях формул системы (10) вычисляются приближённо по одной из кубатурных формул для приближённого вычисления двойных интегралов.

Замечание 2. В зависимости от конкретной решаемой задачи для обеспечения сходимости вычислительного процесса может потребоваться смена знака перед θ на противоположный в правой части формул системы (10). Это связано с вопросами устойчивости решений систем обыкновенных дифференциальных уравнений [1].

"Дифференциальные уравнения и их приложения в математическом моделировании" Саранск, 9-12 июля 2019

Замечание 3. В зависимости от конкретных исходных данных решение рассматриваемой задачи может оказаться не единственным. В этих случаях для того, чтобы зафиксировать нужное решение, требуется дополнительная априорная информация относительно значений искомых коэффициентов a и b. В частности, в качестве такой информации может использоваться соотношение $\psi(a,b) = 0$, где $\psi(a,b)$ – некоторая известная функция.

Пример 1. При помощи вышеописанного метода определим пару коэффициентов a, b в задаче (1)-(2) с начальным условием

$$u_0(x_1, x_2) = x_1^2 + x_2^2.$$

Кроме того, известными полагаются значения точного решения $u(t,x_1,x_2)$ задачи (1)-(2) в точках $\left(t^{(1)},x_1^{(1)},x_2^{(1)}\right),\left(t^{(2)},x_1^{(2)},x_2^{(2)}\right)$. При решении модельного примера был зафиксирован шаг $\theta=0.1$. Интеграл (7) аппрок-

При решении модельного примера был зафиксирован шаг $\theta=0.1$. Интеграл (7) аппроксимируется при помощи многомерного аналога формулы трапеций в области $[-A,A]^2$, где A=5, которая при аппроксимации разбивается на $N^2=10^4$ квадратов с длиной стороны h=0.1. Число итераций метода во всех численных экспериментах составляет $M=10^3$.

Точное решение задачи: a = 1, b = 2 при $u(t, x_1, x_2) = (x_1^2 + x_2^2 + 4t) e^{2t}$.

Результаты решения задачи приведены в нижеследующей таблице.

Таблица 1

No.	$\left(t^{(1)}, x_1^{(1)}, x_2^{(1)}\right)$	$(t^{(2)}, x_1^{(2)}, x_2^{(2)})$	a_0	b_0	$a_{ m прибл}$	$b_{ m прибл}$	$arepsilon_a$	$arepsilon_b$
1	(0.1, 0.1, 0.1)	(0.2, 0.2, 0.2)	3	3	1.00001	1.9999	$1.35\cdot10^{-5}$	$1.01\cdot10^{-4}$
2	(0.1, 0.1, 0.1)	(0.2, 0.2, 0.2)	0.1	0.1	0.999998	2.00001	$1.588 \cdot 10^{-6}$	$1.1881 \cdot 10^{-5}$
3	(0.1, 0.1, 0.1)	(0.2, 0.2, 0.2)	5	0.5	1.00004	1.9997	$4.033 \cdot 10^{-5}$	$3.018 \cdot 10^{-4}$
4	(0.2, 0.3, 0.4)	(0.5, 0.1, 0.2)	10	10	0.999977	2.00009	$2.306 \cdot 10^{-5}$	$8.784 \cdot 10^{-4}$
5	(0.4, 0.5, 0.1)	(0.7, 0.2, 0.3)	5	5	0.998749	2.0027	$1.251 \cdot 10^{-3}$	$2.7\cdot 10^{-3}$

Здесь использованы следующие обозначения:

- No. порядковый номер численного эксперимента;
- a_0, b_0 начальные приближения к коэффициентам a, b соответственно;
- $a_{\text{прибл}}$, $b_{\text{прибл}}$ найденные приближённые значения коэффициентов a, b соответственно:
- ε_a , ε_b погрешность определения коэффициентов a, b соответственно, вычисляемая как модуль разности точного и приближённого значения коэффициента.

Пример 2. При помощи описанного в работе метода решается задача определения коэффициентов a и b в задаче (1)-(2) с начальным условием

$$u_0(x_1, x_2) = \cos(x_1)\cos(2x_2).$$

Кроме того, как и ранее, известными полагаются значения точного решения $u(t, x_1, x_2)$ задачи (1)-(2) в точке $(t^{(1)}, x_1^{(1)}, x_2^{(1)})$. Наконец, предположим, что известным является соотношение ab = 3/4 между коэффициентами a, b.

"Дифференциальные уравнения и их приложения в математическом моделировании" Саранск, 9-12 июля 2019

Для решения поставленной задачи поступим следующим образом. Из соотношения ab =3/4 получаем $b=\frac{3/4}{a}$. Подставим это равенство в (7) и запишем его в точке $\left(t^{(1)},x_1^{(1)},x_2^{(1)}\right)$. Сопоставим полученному в результате уравнению первое дифференциальное уравнение системы (9), в котором положим $\bar{b}(\sigma) = \frac{3/4}{\bar{a}(\sigma)}$. Это уравнение решаем приближённо, аппроксимируя его первой разностной формулой (10), в которой берётся $\bar{b}_j = \frac{3/4}{\bar{a}_i}$.

В проведённых численных экспериментах был зафиксирован шаг $\theta = 0.1$. Интеграл (7) вычислялся приближённо с помощью многомерного аналога формулы трапеций в квадрате $[-A, A]^2$, где A = 5, которая при аппроксимации разбивалась на $N^2 = 10^4$ квадратов с длиной стороны h=0.1. Число итераций метода во всех численных экспериментах составляет $M = 2 \cdot 10^2.$

Точное решение задачи: $a=\frac{1}{2},\,b=\frac{3}{2}$ при $u(t,x_1,x_2)=\cos(x_1)\cos(2x_2)e^{-t}$. Результаты решения задачи приведены в нижеследующей таблице.

Таблица 2

No.	$(t^{(1)}, x_1^{(1)}, x_2^{(1)})$	a_0	$a_{\rm прибл}$	$b_{ m прибл}$	$arepsilon_a$	$arepsilon_b$
1	(0.1, 0.1, 0.1)	0.1	0.499864	1.50041	$1.36\cdot10^{-4}$	$4.076 \cdot 10^{-4}$
2	(0.1, 0.1, 0.1)	2	0.500003	1.49999	$2.545 \cdot 10^{-6}$	$7.635 \cdot 10^{-6}$
3	(0.1, 0.1, 0.1)	5	0.500063	1.49981	$6.291 \cdot 10^{-5}$	$1.887 \cdot 10^{-4}$
4	(0.2, 0.2, 0.2)	5	0.5	1.5	$3.591 \cdot 10^{-8}$	$1.077 \cdot 10^{-7}$
5	(0.5, 0.4, 0.3)	5	0.5	1.5	$3.579 \cdot 10^{-10}$	$1.073 \cdot 10^{-9}$
6	(1.0, 0.0, 0.0)	5	0.5	1.5	$2.546 \cdot 10^{-7}$	$7.637 \cdot 10^{-7}$

В заключение следует отметить, что аналогичным образом может быть построен метод восстановления коэффициентов одномерного аналога параболического уравнения (1).

Литература

- 1. Бойков И.В. Об одном непрерывном методе решения нелинейных операторных уравнений // Дифференциальные уравнения. 2012. Т. 48, № 9. С. 1308-1314.
- 2. Полянин А.Д. Справочник по линейным уравнениям математической физики. М.: ФИЗМАТЛИТ, 2001. 576 с.

MSC2010 65M32

On the approximate solution of inverse coefficient problems for the heat equation

I.V. Boikov¹, V.A. Ryazantsev¹ Penza State University¹